On the maximum drawdown of a Brownian motion

被引:88
|
作者
Magdon-Ismail, M
Atiya, AF
Pratap, A
Abu-Mostafa, YS
机构
[1] Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY 12180 USA
[2] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA
[3] CALTECH, Dept Comp Sci, Pasadena, CA 91125 USA
[4] Cairo Univ, Dept Comp Engn, Giza, Egypt
关键词
random walk; asymptotic distribution; expected maximum drawdown;
D O I
10.1239/jap/1077134674
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The maximum drawdown at time T of a random process on [0, T] can be defined informally as the largest drop from a peak to a trough. In this paper, we investigate the behaviour of this statistic for a Brownian motion with drift. In particular, we give an infinite series representation of its distribution and consider its expected value. When the drift is zero, we give an analytic expression for the expected value, and for nonzero drift, we give an infinite series representation. For all cases, we compute the limiting (T --> infinity) behaviour, which can be logarithmic (for positive drift), square root (for zero drift) or linear (for negative drift).
引用
收藏
页码:147 / 161
页数:15
相关论文
共 50 条
  • [1] On Certain Functionals of the Maximum of Brownian Motion and Their Applications
    Perret, Anthony
    Comtet, Alain
    Majumdar, Satya N.
    Schehr, Gregory
    JOURNAL OF STATISTICAL PHYSICS, 2015, 161 (05) : 1112 - 1154
  • [2] Asymptotics of the maximum of Brownian motion under Erlangian sampling
    Janssen, A. J. E. M.
    van Leeuwaarden, J. S. H.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2013, 24 (04): : 700 - 724
  • [3] Mean and variance of Brownian motion with given final value, maximum and argmax
    Riedel, Kurt
    STOCHASTIC MODELS, 2021, 37 (04) : 679 - 698
  • [4] Brownian Motion
    B. V. Rao
    Resonance, 2021, 26 : 89 - 104
  • [5] Brownian Motion
    Rao, B. V.
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2021, 26 (01): : 89 - 104
  • [6] Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk
    Kuang, Nenghui
    Xie, Huantian
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2015, 67 (01) : 75 - 91
  • [7] Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk
    Nenghui Kuang
    Huantian Xie
    Annals of the Institute of Statistical Mathematics, 2015, 67 : 75 - 91
  • [8] Scaled Penalization of Brownian Motion with Drift and the Brownian Ascent
    Panzo, Hugo
    SEMINAIRE DE PROBABILITES L, 2019, 2252 : 257 - 300
  • [9] Reinforced Brownian Motion: A Prototype
    Percus, Jerome K.
    Percus, Ora E.
    JOURNAL OF STATISTICAL PHYSICS, 2014, 156 (05) : 917 - 931
  • [10] HAUSDORFF MEASURE OF ARCS AND BROWNIAN MOTION ON BROWNIAN SPATIAL TREES
    Croydon, David A.
    ANNALS OF PROBABILITY, 2009, 37 (03) : 946 - 978