EFFECTIVE RESULTS ON THE WARING PROBLEM FOR FINITE SIMPLE GROUPS

被引:13
作者
Guralnick, Robert M. [1 ]
Pham Huu Tiep [2 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
CONJUGACY CLASSES; WORD MAPS; REPRESENTATIONS; CHARACTERS; COMMUTATORS; PRODUCTS; POWERS;
D O I
10.1353/ajm.2015.0035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite quasisimple group of Lie type. We show that there are regular semisimple elements x,y is an element of G, x of prime order, and vertical bar y vertical bar is divisible by at most two primes, such that x(G) . y(G) superset of G\Z(G). In fact in all but four cases, y can be chosen to be of square-free order. Using this result, we prove an effective version of a previous result of Larsen, Shalev, and Tiep by showing that, given any integer m >= 1, if the order of a finite simple group S is at least m(8m2), then every element in S is a product of two mth powers. Furthermore, the verbal width of en on any finite simple group S is at most 80m root 2log(2)m + 56. We also show that, given any two non-trivial words w(1), w(2), if G is a finite quasisimple group of large enough order, then w(1) (G)w(2)(G) superset of G\Z (G).
引用
收藏
页码:1401 / 1430
页数:30
相关论文
共 44 条
[1]  
[Anonymous], 2004, GAP GROUPS ALG PROGR
[2]  
Bertram E., 1972, J. Combin. Theory, V12, P368, DOI DOI 10.1016/0097-3165(72)90102-1
[3]  
CARTER RW, 1985, PURE APPL MATH
[4]  
CHEVALLEY C, 1997, COLLECTED WORKS, V2
[5]   TRUNCATION AND DUALITY IN THE CHARACTER RING OF A FINITE-GROUP OF LIE TYPE [J].
CURTIS, CW .
JOURNAL OF ALGEBRA, 1980, 62 (02) :320-332
[6]  
Curtis R.T., 1985, Atlas of Finite Groups
[7]   REPRESENTATIONS OF REDUCTIVE GROUPS OVER FINITE-FIELDS [J].
DELIGNE, P ;
LUSZTIG, G .
ANNALS OF MATHEMATICS, 1976, 103 (01) :103-161
[8]  
Deriziotis D. I., 1984, VORLESUNGEN FACHBERE, V11
[9]  
Digne F., 1991, LONDON MATH SCI STUD, V21
[10]  
Dornhoff Larry, 1971, PURE APPL MATH, V7