Flip Graphs of Bounded Degree Triangulations

被引:0
作者
Aichholzer, Oswin [1 ]
Hackl, Thomas [1 ]
Orden, David [2 ]
Ramos, Pedro [2 ]
Rote, Gunter [3 ]
Schulz, Andre [4 ]
Speckmann, Bettina [5 ]
机构
[1] Graz Univ Technol, Inst Software Technol, Graz, Austria
[2] Univ Alcala, Dept Matemat, Alcala De Henares, Spain
[3] Free Univ Berlin, Inst Informat, D-14195 Berlin, Germany
[4] Univ Munster, FB Math & Informat, D-48149 Munster, Germany
[5] TU Eindhoven, Dept Math & Comp Sci, Eindhoven, Netherlands
基金
奥地利科学基金会;
关键词
Flip graphs; Triangulations; Rotation distance; Connectivity; Degree bounds;
D O I
10.1007/s00373-012-1229-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study flip graphs of triangulations whose maximum vertex degree is bounded by a constant k. In particular, we consider triangulations of sets of n points in convex position in the plane and prove that their flip graph is connected if and only if k > 6; the diameter of the flip graph is O(n (2)). We also show that, for general point sets, flip graphs of pointed pseudo-triangulations can be disconnected for k a parts per thousand currency sign 9, and flip graphs of triangulations can be disconnected for any k. Additionally, we consider a relaxed version of the original problem. We allow the violation of the degree bound k by a small constant. Any two triangulations with maximum degree at most k of a convex point set are connected in the flip graph by a path of length O(n log n), where every intermediate triangulation has maximum degree at most k + 4.
引用
收藏
页码:1577 / 1593
页数:17
相关论文
共 15 条
[1]   ON STRUCTURAL AND GRAPH THEORETIC PROPERTIES OF HIGHER ORDER DELAUNAY GRAPHS [J].
Abellanas, Manuel ;
Bose, Prosenjit ;
Garcia, Jesus ;
Hurtado, Ferran ;
Nicolas, Carlos M. ;
Ramos, Pedro .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2009, 19 (06) :595-615
[2]  
Aichholzer O., 2009, ELECT NOTES DISCRETE, V34, P509
[3]  
[Anonymous], 1988, J. Amer. Math. Soc., DOI DOI 10.2307/1990951.MR928904
[4]  
Bereg S, 2004, INFORM PROCESS LETT, V90, P141, DOI [10.1016/j.ipl.2004.01.021, 10.1016/j.ip1.2004.01.021]
[5]   Flips in planar graphs [J].
Bose, Prosenjit ;
Hurtado, Ferran .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2009, 42 (01) :60-80
[6]  
EDELSBRUNNER H, 2006, CAMBRIDGE MONOGRAPHS
[7]  
Eppstein D., 2010, J COMPUTAT GEOM, V1
[8]  
Hackl T., 2010, THESIS IST GRAZ
[9]  
HANKE S., 1996, J UNIVERS COMPUT SCI, V2, P570
[10]   Graphs of triangulations and perfect matchings [J].
Houle, ME ;
Hurtado, F ;
Noy, M ;
Rivera-Campo, E .
GRAPHS AND COMBINATORICS, 2005, 21 (03) :325-331