One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite

被引:395
作者
Subramaniam, Chandramouli [1 ]
Yamada, Takeo [1 ,2 ]
Kobashi, Kazufumi [1 ,2 ]
Sekiguchi, Atsuko [2 ]
Futaba, Don N. [1 ,2 ]
Yumura, Motoo [1 ,2 ]
Hata, Kenji [1 ,2 ,3 ]
机构
[1] Technol Res Assoc Single Wall Carbon Nanotubes TA, Tsukuba, Ibaraki 3058565, Japan
[2] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan
[3] Japan Sci & Technol Agcy JST, Kawaguchi, Saitama 3320012, Japan
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
关键词
ELECTRICAL-TRANSPORT; ELECTROMIGRATION; CONDUCTIVITY; METALLIZATION; FAILURE; MOTION;
D O I
10.1038/ncomms3202
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Increased portability, versatility and ubiquity of electronics devices are a result of their progressive miniaturization, requiring current flow through narrow channels. Present-day devices operate close to the maximum current-carrying-capacity (that is, ampacity) of conductors (such as copper and gold), leading to decreased lifetime and performance, creating demand for new conductors with higher ampacity. Ampacity represents the maximum current-carrying capacity of the object that depends both on the structure and material. Here we report a carbon nanotube-copper composite exhibiting similar conductivity (2.3-4.7 x 10(5) S cm(-1)) as copper (5.8 x 10(5) S cm(-1)), but with a 100-times higher ampacity (6 x 10(8) A cm(-2)). Vacuum experiments demonstrate that carbon nanotubes suppress the primary failure pathways in copper as observed by the increased copper diffusion activation energy (similar to 2.0 eV) in carbon nanotube-copper composite, explaining its higher ampacity. This is the only material with both high conductivity and high ampacity, making it uniquely suited for applications in microscale electronics and inverters.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] ELECTROMIGRATION FAILURE
    LLOYD, JR
    [J]. JOURNAL OF APPLIED PHYSICS, 1991, 69 (11) : 7601 - 7604
  • [32] Bistability in Atomic-Scale Antiferromagnets
    Loth, Sebastian
    Baumann, Susanne
    Lutz, Christopher P.
    Eigler, D. M.
    Heinrich, Andreas J.
    [J]. SCIENCE, 2012, 335 (6065) : 196 - 199
  • [33] Breakdown current density of graphene nanoribbons
    Murali, Raghunath
    Yang, Yinxiao
    Brenner, Kevin
    Beck, Thomas
    Meindl, James D.
    [J]. APPLIED PHYSICS LETTERS, 2009, 94 (24)
  • [34] Compact physical models for multiwall carbon-nanotube interconnects
    Naeemi, Azad
    Meindl, James D.
    [J]. IEEE ELECTRON DEVICE LETTERS, 2006, 27 (05) : 338 - 340
  • [35] Nguyen H. V., 2004, 42 ANN INT REL PHYS, P25
  • [36] Nguyen H. V., 2003, 6 ANN WORKSH SEM ADV, V622
  • [37] Ohring M., 1998, RELIABILITY FAILURE
  • [38] Oliver K. G., 1990, BASIC IND ELECT TRAI
  • [39] Electron-phonon scattering in metallic single-walled carbon nanotubes
    Park, JY
    Rosenblatt, S
    Yaish, Y
    Sazonova, V
    Üstünel, H
    Braig, S
    Arias, TA
    Brouwer, PW
    McEuen, PL
    [J]. NANO LETTERS, 2004, 4 (03) : 517 - 520
  • [40] Preece W. H., 1884, P R SOC LONDON, P464