One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite

被引:395
作者
Subramaniam, Chandramouli [1 ]
Yamada, Takeo [1 ,2 ]
Kobashi, Kazufumi [1 ,2 ]
Sekiguchi, Atsuko [2 ]
Futaba, Don N. [1 ,2 ]
Yumura, Motoo [1 ,2 ]
Hata, Kenji [1 ,2 ,3 ]
机构
[1] Technol Res Assoc Single Wall Carbon Nanotubes TA, Tsukuba, Ibaraki 3058565, Japan
[2] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan
[3] Japan Sci & Technol Agcy JST, Kawaguchi, Saitama 3320012, Japan
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
关键词
ELECTRICAL-TRANSPORT; ELECTROMIGRATION; CONDUCTIVITY; METALLIZATION; FAILURE; MOTION;
D O I
10.1038/ncomms3202
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Increased portability, versatility and ubiquity of electronics devices are a result of their progressive miniaturization, requiring current flow through narrow channels. Present-day devices operate close to the maximum current-carrying-capacity (that is, ampacity) of conductors (such as copper and gold), leading to decreased lifetime and performance, creating demand for new conductors with higher ampacity. Ampacity represents the maximum current-carrying capacity of the object that depends both on the structure and material. Here we report a carbon nanotube-copper composite exhibiting similar conductivity (2.3-4.7 x 10(5) S cm(-1)) as copper (5.8 x 10(5) S cm(-1)), but with a 100-times higher ampacity (6 x 10(8) A cm(-2)). Vacuum experiments demonstrate that carbon nanotubes suppress the primary failure pathways in copper as observed by the increased copper diffusion activation energy (similar to 2.0 eV) in carbon nanotube-copper composite, explaining its higher ampacity. This is the only material with both high conductivity and high ampacity, making it uniquely suited for applications in microscale electronics and inverters.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Thermomigration Versus Electromigration in Microelectronics Solder Joints
    Abdulhamid, Mohd F.
    Basaran, Cemal
    Lai, Yi-Shao
    [J]. IEEE TRANSACTIONS ON ADVANCED PACKAGING, 2009, 32 (03): : 627 - 635
  • [2] [Anonymous], 1960, The Nature of the Chemical Bond, 3rd ed
  • [3] [Anonymous], 2010, INT TECHNOLOGY ROADM
  • [4] Bari G.A., 2010, Modern electroplating, V5th
  • [5] Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity
    Behabtu, Natnael
    Young, Colin C.
    Tsentalovich, Dmitri E.
    Kleinerman, Olga
    Wang, Xuan
    Ma, Anson W. K.
    Bengio, E. Amram
    ter Waarbeek, Ron F.
    de Jong, Jorrit J.
    Hoogerwerf, Ron E.
    Fairchild, Steven B.
    Ferguson, John B.
    Maruyama, Benji
    Kono, Junichiro
    Talmon, Yeshayahu
    Cohen, Yachin
    Otto, Marcin J.
    Pasquali, Matteo
    [J]. SCIENCE, 2013, 339 (6116) : 182 - 186
  • [6] ELECTROMIGRATION FAILURE MODES IN ALUMINUM METALLIZATION FOR SEMICONDUCTOR DEVICES
    BLACK, JR
    [J]. PROCEEDINGS OF THE IEEE, 1969, 57 (09) : 1587 - &
  • [7] ELECTROMIGRATION - A BRIEF SURVEY AND SOME RECENT RESULTS
    BLACK, JR
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1969, ED16 (04) : 338 - &
  • [8] Butrymowicz D. B., 1973, Journal of Physical and Chemical Reference Data, V2, P643, DOI 10.1063/1.3253129
  • [9] Copper/carbon nanotube composite interconnect for enhanced electromigration resistance
    Chai, Yang
    Chan, Philip C. H.
    Fu, Yunyi
    Chuang, Y. C.
    Liu, C. Y.
    [J]. 58TH ELECTRONIC COMPONENTS & TECHNOLOGY CONFERENCE, PROCEEDINGS, 2008, : 412 - +
  • [10] Current saturation and electrical breakdown in multiwalled carbon nanotubes
    Collins, PG
    Hersam, M
    Arnold, M
    Martel, R
    Avouris, P
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (14) : 3128 - 3131