Model reduction for the collective dynamics of globally coupled oscillators: From finite networks to the thermodynamic limit

被引:13
作者
Smith, Lachlan D. [1 ]
Gottwald, Georg A. [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
KURAMOTO MODEL; CHIMERA STATES; SYNCHRONIZATION;
D O I
10.1063/5.0009790
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Model reduction techniques have been widely used to study the collective behavior of globally coupled oscillators. However, most approaches assume that there are infinitely many oscillators. Here, we propose a new ansatz, based on the collective coordinate approach, that reproduces the collective dynamics of the Kuramoto model for finite networks to high accuracy, yields the same bifurcation structure in the thermodynamic limit of infinitely many oscillators as previous approaches, and additionally captures the dynamics of the order parameter in the thermodynamic limit, including critical slowing down that results from a cascade of saddle-node bifurcations.
引用
收藏
页数:12
相关论文
共 40 条
  • [1] The Kuramoto model:: A simple paradigm for synchronization phenomena
    Acebrón, JA
    Bonilla, LL
    Vicente, CJP
    Ritort, F
    Spigler, R
    [J]. REVIEWS OF MODERN PHYSICS, 2005, 77 (01) : 137 - 185
  • [2] [Anonymous], 2012, 2012 INT JOINT C NEU
  • [3] [Anonymous], 2007, Springer Series in Synergetics
  • [4] Synchronization in complex networks
    Arenas, Alex
    Diaz-Guilera, Albert
    Kurths, Jurgen
    Moreno, Yamir
    Zhou, Changsong
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03): : 93 - 153
  • [5] Synchronization and random long time dynamics for mean-field plane rotators
    Bertini, Lorenzo
    Giacomin, Giambattista
    Poquet, Christophe
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2014, 160 (3-4) : 593 - 653
  • [6] Dynamical Aspects of Mean Field Plane Rotators and the Kuramoto Model
    Bertini, Lorenzo
    Giacomin, Giambattista
    Pakdaman, Khashayar
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2010, 138 (1-3) : 270 - 290
  • [7] Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review
    Bick, Christian
    Goodfellow, Marc
    Laing, Carlo R.
    Martens, Erik A.
    [J]. JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2020, 10 (01):
  • [8] Chaos in Kuramoto oscillator networks
    Bick, Christian
    Panaggio, Mark J.
    Martens, Erik A.
    [J]. CHAOS, 2018, 28 (07)
  • [9] Ditto W, 2002, NATURE, V415, P736, DOI 10.1038/415736b
  • [10] Synchronization in complex networks of phase oscillators: A survey
    Doerfler, Florian
    Bullo, Francesco
    [J]. AUTOMATICA, 2014, 50 (06) : 1539 - 1564