Variational approach to modeling soft and stiff interfaces in the Kirchhoff-Love theory of plates

被引:37
作者
Furtsev, Alexey [1 ,3 ]
Rudoy, Evgeny [1 ,2 ,3 ]
机构
[1] Lavrentyev Inst Hydrodynam SB RAS, 15 Ac Lavrentieva Ave, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, 1 Pirogova Str, Novosibirsk 630090, Russia
[3] Sobolev Inst Math, 4 Ac Koptyuga Ave, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
Bonded structure; Kirchhoff-Love plate; Composite material; Interface conditions; Biharmonic equation; Asymptotic analysis; QUASI-STATIC DELAMINATION; NUMERICAL-SIMULATION; IMPERFECT INTERFACE; ASYMPTOTIC ANALYSIS; ELASTIC INCLUSIONS; BOUNDARY; EQUILIBRIUM; DERIVATION;
D O I
10.1016/j.ijsolstr.2020.06.044
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Within the framework of the Kirchhoff-Love theory, a thin homogeneous layer (called adhesive) of small width between two plates (called adherents) is considered. It is assumed that elastic properties of the adhesive layer depend on its width which is a small parameter of the problem. Our goal is to perform an asymptotic analysis as the parameter goes to zero. It is shown that depending on the softness or stiffness of the adhesive, there are seven distinct types of interface conditions. In all cases, we establish weak convergence of the solutions of the initial problem to the solutions of limiting ones in appropriate Sobolev spaces. The asymptotic analysis is based on variational properties of solutions of corresponding equilibrium problems. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:562 / 574
页数:13
相关论文
共 67 条
[1]  
[Anonymous], 1997, STUD MATH APPL
[2]   Asymptotic analysis of adhesively bonded nonlinearly elastic plates [J].
Åslund, J .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2005, 85 (01) :23-35
[3]  
Aufranc M., 1989, COMPUT METHODS APPL
[4]   Imperfect soft and stiff interfaces in two-dimensional elasticity [J].
Benveniste, Y ;
Miloh, T .
MECHANICS OF MATERIALS, 2001, 33 (06) :309-323
[5]   Multi-materials with strong interface: Variational modelings [J].
Bessoud, Anne Laure ;
Krasucki, Francoise ;
Michaille, Gerard .
ASYMPTOTIC ANALYSIS, 2009, 61 (01) :1-19
[6]   Plate-like and shell-like inclusions with high rigidity [J].
Bessoud, Anne-Laure ;
Krasucki, Francoise ;
Serpilli, Michele .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (11-12) :697-702
[7]   Asymptotic Analysis of Shell-like Inclusions with High Rigidity [J].
Bessoud, Anne-Laure ;
Krasucki, Francoise ;
Serpilli, Michele .
JOURNAL OF ELASTICITY, 2011, 103 (02) :153-172
[8]   Boundary homogenization and reduction of dimension in a Kirchhoff-Love plate [J].
Blanchard, Dominique ;
Gaudiello, Antonio ;
Mel'nyk, Taras A. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 39 (06) :1764-1787
[9]   An asymptotic plate model for magneto-electro-thermo-elastic sensors and actuators [J].
Bonaldi, Francesco ;
Geymonat, Giuseppe ;
Krasucki, Francoise ;
Serpilli, Michele .
MATHEMATICS AND MECHANICS OF SOLIDS, 2017, 22 (04) :798-822
[10]  
Caillerie D., 1980, Mathematical Methods in the Applied Sciences, V2, P251