Systematic development of predictive molecular models of high surface area activated carbons for adsorption applications

被引:86
作者
Di Biase, Emanuela [1 ]
Sarkisov, Lev [1 ]
机构
[1] Univ Edinburgh, Sch Engn, Inst Mat & Proc, Edinburgh EH9 3JL, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
MONTE-CARLO SIMULATIONS; PORE-SIZE DISTRIBUTION; HYDROGEN STORAGE; NITROGEN ADSORPTION; MICROPOROUS CARBONS; DIOXIDE CAPTURE; GAS-ADSORPTION; CO2; ADSORPTION; FORCE-FIELD; AB-INITIO;
D O I
10.1016/j.carbon.2013.07.061
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Adsorption in porous materials is a promising technology for CO2 capture and storage. Particularly important applications are adsorption separation of streams associated with the coal power plant operation, as well as natural gas sweetening. High surface area activated carbons are a promising family of materials for these applications, especially in the high pressure regimes. As the streams under consideration are generally multi-component mixtures, development and optimization of adsorption processes for their separation would substantially benefit from predictive simulation models. Here, we develop a molecular model of a high surface area carbon material based on a random packing of small fragments of a carbon sheet. In the construction of the model, we introduce a number of constraints, such as the value of the accessible surface area, concentration of the surface groups, and pore volume to bring the properties the model structure close to the reference porous material (Maxsorb carbon with the surface area in excess of 3000 m(2)/g). We use experimental data for CO2 and methane adsorption to tune and validate the model. We demonstrate the accuracy and robustness of the model by predicting single component adsorption of CO2, methane and other relevant components under a range of conditions. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:262 / 280
页数:19
相关论文
共 107 条
[1]   Separation of CO2 from flue gas:: A review [J].
Aaron, D ;
Tsouris, C .
SEPARATION SCIENCE AND TECHNOLOGY, 2005, 40 (1-3) :321-348
[2]  
Allen M.P., 1989, Computer simulation of liquids, P1
[3]  
Alonso TV, 2010, HIGH EFF CO2 REM NAT, P1
[4]  
[Anonymous], 2007, DOENETL20071281, P1
[5]  
Bandosz TJ, 2003, CHEM PHYS CARBON, V28, P41
[6]   A NEW MIXING OF HARTREE-FOCK AND LOCAL DENSITY-FUNCTIONAL THEORIES [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (02) :1372-1377
[7]   An Experimental and Molecular Simulation Study of the Adsorption of Carbon Dioxide and Methane in Nanoporous Carbons in the Presence of Water [J].
Billemont, Pierre ;
Coasne, Benoit ;
De Weireld, Guy .
LANGMUIR, 2011, 27 (03) :1015-1024
[8]   DETERMINING ATOM-CENTERED MONOPOLES FROM MOLECULAR ELECTROSTATIC POTENTIALS - THE NEED FOR HIGH SAMPLING DENSITY IN FORMAMIDE CONFORMATIONAL-ANALYSIS [J].
BRENEMAN, CM ;
WIBERG, KB .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1990, 11 (03) :361-373
[9]   Adsorption of water in activated carbons: Effects of pore blocking and connectivity [J].
Brennan, JK ;
Thomson, KT ;
Gubbins, KE .
LANGMUIR, 2002, 18 (14) :5438-5447
[10]   PATH-INTEGRAL SIMULATIONS OF MIXED PARA-D-2 AND ORTHO-D-2 CLUSTERS - THE ORIENTATIONAL EFFECTS [J].
BUCH, V .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (10) :7610-7629