A Sulfur-Limonene-Based Electrode for Lithium-Sulfur Batteries: High-Performance by Self-Protection

被引:130
|
作者
Wu, Feixiang [1 ]
Chen, Shuangqiang [1 ]
Srot, Vesna [1 ]
Huang, Yuanye [1 ]
Sinha, Shyam Kanta [1 ]
van Aken, Peter A. [1 ]
Maier, Joachim [1 ]
Yu, Yan [1 ,2 ]
机构
[1] Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany
[2] Chinese Acad Sci, Univ Sci & Technol China, Dept Mat Sci & Engn, Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
cathodes; limonene; Li-S batteries; polysulfide; self-protection; sulfur; ELEMENTAL SULFUR; INVERSE VULCANIZATION; CATHODE; POLYSULFIDE; NITROGEN; ADSORPTION; CAPACITY;
D O I
10.1002/adma.201706643
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The lithium-sulfur battery is considered as one of the most promising energy storage systems and has received enormous attentions due to its high energy density and low cost. However, polysulfide dissolution and the resulting shuttle effects hinder its practical application unless very costly solutions are considered. Herein, a sulfur-rich polymer termed sulfur-limonene polysulfide is proposed as powerful electroactive material that uniquely combines decisive advantages and leads out of this dilemma. It is amenable to a large-scale synthesis by the abundant, inexpensive, and environmentally benign raw materials sulfur and limonene (from orange and lemon peels). Moreover, owing to self-protection and confinement of lithium sulfide and sulfur, detrimental dissolution and shuttle effects are successfully avoided. The sulfur-limonene-based electrodes (without elaborate synthesis or surface modification) exhibit excellent electrochemical performances characterized by high discharge capacities (approximate to 1000 mA h g(-1) at C/2) and remarkable cycle stability (average fading rate as low as 0.008% per cycle during 300 cycles).
引用
收藏
页数:8
相关论文
共 50 条
  • [31] A Freestanding Hollow Carbon Nanosphere as Efficient Sulfur Hosts for High-Performance Lithium-Sulfur Batteries
    Xiang, Kaixiong
    Wang, Xianyou
    Chen, Han
    Hu, Jun
    Shu, Hongbo
    Chen, Manfang
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2017, 9 (08) : 1180 - 1184
  • [32] Natural chalcopyrite as a sulfur source and its electrochemical performance for lithium-sulfur batteries
    Zhou, Jiahui
    Li, Sijie
    Sun, Wei
    Ji, Xiaobo
    Yang, Yue
    INORGANIC CHEMISTRY FRONTIERS, 2019, 6 (05) : 1217 - 1227
  • [33] N-doped Mesoporous Carbon/Graphene Aerogels as Sulfur Hosts for High-Performance Lithium-Sulfur Batteries
    Li, Zhengzheng
    Tan, Yingbin
    CHEMISTRYSELECT, 2018, 3 (16): : 4319 - 4323
  • [34] Tri-Functional Copper Sulfide as Sulfur Carrier for High-Performance Lithium-Sulfur Batteries
    He, Deqing
    Xue, Pan
    Song, Dongdong
    Qu, Jie
    Lai, Chao
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (07) : A1499 - A1502
  • [35] Gel based sulfur cathodes with a high sulfur content and large mass loading for high-performance lithium-sulfur batteries
    Li, Shiqi
    Mou, Tong
    Ren, Guofeng
    Warzywoda, Juliusz
    Wei, Zidong
    Wang, Bin
    Fan, Zhaoyang
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (04) : 1650 - 1657
  • [36] Graphene oxide-polypyrrole compositae as sulfur hosts for high-performance lithium-sulfur batteries
    Wang, Qian
    Yang, Chengkai
    Tang, Hui
    Wu, Kai
    Zhou, Henghui
    FUNCTIONAL MATERIALS LETTERS, 2018, 11 (06)
  • [37] Polydopamine-coated separator for high-performance lithium-sulfur batteries
    Zhang, Zhian
    Zhang, Zhiyong
    Li, Jie
    Lai, Yanqing
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (06) : 1709 - 1715
  • [38] Aminomethyl-Functionalized Carbon Nanotubes as a Host of Small Sulfur Clusters for High-Performance Lithium-Sulfur Batteries
    Li, Fen
    Tao, Jiayou
    Zou, Zhijun
    Li, Chang
    Hou, Zhaohui
    Zhao, Jijun
    CHEMSUSCHEM, 2020, 13 (10) : 2761 - 2768
  • [39] Chemical anchor of lithium polysulfide through sulfur copolymers for high-performance lithium-sulfur batteries
    Zhu, Mengqi
    Zhao, Huaqi
    Quan, Kechun
    Chen, Huiduan
    Zhang, Shasha
    Yi, Huiping
    Zhang, Jindan
    ELECTROCHIMICA ACTA, 2024, 474
  • [40] Efficient Polysulfide Chemisorption in Covalent Organic Frameworks for High-Performance Lithium-Sulfur Batteries
    Ghazi, Zahid Ali
    Zhu, Lingyun
    Wang, Han
    Naeem, Abdul
    Khattak, Abdul Muqsit
    Liang, Bin
    Khan, Niaz Ali
    Wei, Zhixiang
    Li, Lianshan
    Tang, Zhiyong
    ADVANCED ENERGY MATERIALS, 2016, 6 (24)