Efficient Algorithms for Bayesian Nearest Neighbor Gaussian Processes

被引:90
作者
Finley, Andrew O. [1 ]
Datta, Abhirup [2 ]
Cook, Bruce D. [3 ]
Morton, Douglas C. [3 ]
Andersen, Hans E. [4 ]
Banerjee, Sudipto [5 ]
机构
[1] Michigan State Univ, E Lansing, MI 48824 USA
[2] Johns Hopkins Univ, Baltimore, MD USA
[3] NASA, Washington, DC 20546 USA
[4] US Forest Serv, Washington, DC 20250 USA
[5] Univ Calif Los Angeles, Los Angeles, CA 90024 USA
基金
美国国家科学基金会;
关键词
Bayesian methods; Computationally intensive methods; Spatial analysis; Statistical computing; Stochastic processes; PROCESS MODELS; APPROXIMATION; LIKELIHOODS; HEIGHT; LIDAR;
D O I
10.1080/10618600.2018.1537924
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider alternate formulations of recently proposed hierarchical nearest neighbor Gaussian process (NNGP) models for improved convergence, faster computing time, and more robust and reproducible Bayesian inference. Algorithms are defined that improve CPU memory management and exploit existing high-performance numerical linear algebra libraries. Computational and inferential benefits are assessed for alternate NNGP specifications using simulated datasets and remotely sensed light detection and ranging data collected over the U.S. Forest Service Tanana Inventory Unit (TIU) in a remote portion of Interior Alaska. The resulting data product is the first statistically robust map of forest canopy for the TIU. Supplemental materials for this article are available online.
引用
收藏
页码:401 / 414
页数:14
相关论文
共 57 条
[1]   The ICESat-2 Laser Altimetry Mission [J].
Abdalati, Waleed ;
Zwally, H. Jay ;
Bindschadler, Robert ;
Csatho, Bea ;
Farrell, Sinead Louise ;
Fricker, Helen Amanda ;
Harding, David ;
Kwok, Ronald ;
Lefsky, Michael ;
Markus, Thorsten ;
Marshak, Alexander ;
Neumann, Thomas ;
Palm, Stephen ;
Schutz, Bob ;
Smith, Ben ;
Spinhirne, James ;
Webb, Charles .
PROCEEDINGS OF THE IEEE, 2010, 98 (05) :735-751
[2]  
AICC, 2016, FIR HIST AL
[3]   Algorithm 837: AMD, an approximate minimum degree ordering algorithm [J].
Amestoy, PR ;
Enseeiht-Irit ;
Davis, TA ;
Duff, IS .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2004, 30 (03) :381-388
[4]   An approximate minimum degree ordering algorithm [J].
Amestoy, PR ;
Davis, TA ;
Duff, IS .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (04) :886-905
[5]  
[Anonymous], 2011, ADV CHALLENGES SPACE
[6]  
[Anonymous], 2017, INLA BAYESIAN ANAL L
[7]  
[Anonymous], 2006, Technical Report General Technical Report RMRS-GTR-183,
[8]  
[Anonymous], 2012, MACHINE LEARNING PRO
[9]  
[Anonymous], METHODS ANAL LARGE S
[10]   Stationary process approximation for the analysis of large spatial datasets [J].
Banerjee, Sudipto ;
Gelfand, Alan E. ;
Finley, Andrew O. ;
Sang, Huiyan .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 :825-848