A remark about static space times

被引:17
作者
Lafontaine, Jacques [1 ]
机构
[1] Univ Montpellier 2, CNRS, Dept Math, UMR 5149, F-34095 Montpellier 5, France
关键词
Scalar curvature;
D O I
10.1016/j.geomphys.2008.09.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss a differential equation, whose unknowns are a function and a Riemannian metric. This equation occurs both in general relativity (static space times) and in the study of the space of Riemannian metrics on a manifold (singularities of the map from the space of metrics into the space of functions, which assigns to any metric its scalar curvature). (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:50 / 53
页数:4
相关论文
共 12 条
[1]  
Anderson MT, 2002, J HIGH ENERGY PHYS
[2]   ON THE UNIQUENESS OF STATIC PERFECT-FLUID SOLUTIONS IN GENERAL-RELATIVITY [J].
BEIG, R ;
SIMON, W .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (02) :373-390
[3]  
Besse A.L., 1987, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3rd series, V10
[4]  
Bessieres L., 2000, SEMINAIRE THEORIE SP
[5]  
BOURNE GH, 1975, RHESUS MONKEY, V1, P1
[6]   DIRECT APPROACH TO DETERMINATION OF GAUSSIAN AND SCALAR CURVATURE FUNCTIONS [J].
KAZDAN, JL ;
WARNER, FW .
INVENTIONES MATHEMATICAE, 1975, 28 (03) :227-230
[7]   A DIFFERENTIAL-EQUATION ARISING FROM SCALAR CURVATURE FUNCTION [J].
KOBAYASHI, O .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1982, 34 (04) :665-675
[8]  
Kuhnel W., 1988, ASPECTS MATH, VE12, P105
[9]  
LAFONTAINE J, 1983, J MATH PURE APPL, V62, P63
[10]   BOOST SYMMETRIES IN SPATIALLY COMPACT SPACETIMES WITH A COSMOLOGICAL CONSTANT [J].
MONCRIEF, V .
CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (11) :2515-2520