Guidelines for Ferroelectric FET Reliability Optimization: Charge Matching

被引:45
作者
Deng, Shan [1 ]
Liu, Zhan [2 ]
Li, Xueqing [3 ]
Ma, T. P. [2 ]
Ni, Kai [1 ]
机构
[1] Rochester Inst Technol, Dept Microsyst Engn, Rochester, NY 14623 USA
[2] Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA
[3] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
基金
美国国家科学基金会;
关键词
Iron; Switches; Optimization; Reliability; Hafnium compounds; Stress; Guidelines; Ferroelectric; FeFET; reliability; optimization; charge matching; MEMORY;
D O I
10.1109/LED.2020.3011037
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An optimization principle for ferroelectric FET (FeFET), centered around charge matching between the ferroelectric and its underlying semiconductor, is theoretically investigated. This letter shows that, by properly reducing the ferroelectric polarization charge and its background dielectric constant, charge matching can be improved to enable simultaneously: i) reduction of the interlayer and semiconductor electric fields during programming, reading, and retention, leading to prolonged endurance and retention; ii) improvement of the memory window; and iii) suppression of device-to-device variations by affording full polarization switching. These attributes provide an incentive for the presentation of the proposed guidelines for FeFET optimization as detailed in this letter.
引用
收藏
页码:1348 / 1351
页数:4
相关论文
共 22 条
[1]   Monte Carlo Simulation of Switching Dynamics in Polycrystalline Ferroelectric Capacitors [J].
Alessandri, Cristobal ;
Pandey, Pratyush ;
Abusleme, Angel ;
Seabaugh, Alan .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2019, 66 (08) :3527-3534
[2]   A Comprehensive Model for Ferroelectric FET Capturing the Key Behaviors: Scalability, Variation, Stochasticity, and Accumulation [J].
Deng, Shan ;
Yin, Guodong ;
Chakraborty, Wriddhi ;
Dutta, Sourav ;
Datta, Suman ;
Li, Xueqing ;
Ni, Kai .
2020 IEEE SYMPOSIUM ON VLSI TECHNOLOGY, 2020,
[3]  
Dünkel S, 2017, INT EL DEVICES MEET
[4]   One transistor ferroelectric memory with Pt/Pb5Ge3O11/Ir/Poly-Si/SiO2/Si gate stack [J].
Li, T ;
Hsu, ST ;
Ulrich, BD ;
Stecker, L ;
Evans, DR ;
Lee, JJ .
IEEE ELECTRON DEVICE LETTERS, 2002, 23 (06) :339-341
[5]   Fabrication and characterization of a Pb5Ge3O11 one-transistor-memory device [J].
Li, TK ;
Hsu, ST ;
Ulrich, B ;
Ying, H ;
Stecker, L ;
Evans, D ;
Ono, Y ;
Maa, JS ;
Lee, JJ .
APPLIED PHYSICS LETTERS, 2001, 79 (11) :1661-1663
[6]   Grain Size Engineering of Ferroelectric Zr-doped HfO2 for the Highly Scaled Devices Applications [J].
Liao, Jiajia ;
Zeng, Binjian ;
Sun, Qi ;
Chen, Qiang ;
Liao, Min ;
Qiu, Chenguang ;
Zhang, Zhiyong ;
Zhou, Yichun .
IEEE ELECTRON DEVICE LETTERS, 2019, 40 (11) :1868-1871
[7]   Variability Analysis for Ferroelectric FET Nonvolatile Memories Considering Random Ferroelectric-Dielectric Phase Distribution [J].
Liu, You-Sheng ;
Su, Pin .
IEEE ELECTRON DEVICE LETTERS, 2020, 41 (03) :369-372
[8]   The effects of layering in ferroelectric Si-doped HfO2 thin films [J].
Lomenzo, Patrick D. ;
Takmeel, Qanit ;
Zhou, Chuanzhen ;
Liu, Yang ;
Fancher, Chris M. ;
Jones, Jacob L. ;
Moghaddam, Saeed ;
Nishida, Toshikazu .
APPLIED PHYSICS LETTERS, 2014, 105 (07)
[9]   Why is nonvolatile ferroelectric memory field-effect transistor still elusive? [J].
Ma, TP ;
Han, JP .
IEEE ELECTRON DEVICE LETTERS, 2002, 23 (07) :386-388
[10]  
Müller J, 2016, 2016 16TH NON-VOLATILE MEMORY TECHNOLOGY SYMPOSIUM (NVMTS)