Classification of 2-arc-transitive dihedrants

被引:47
作者
Du, Shaofei [1 ]
Malnic, Aleksander [2 ]
Marusic, Dragan [2 ,3 ]
机构
[1] Capital Normal Univ, Beijing 100037, Peoples R China
[2] Univ Ljubljana, IMFM, Ljubljana 1000, Slovenia
[3] Univ Primorska, FAMNIT, Koper 6000, Slovenia
关键词
Permutation group; Imprimitive group; Dihedral group; Cayley graph; Dihedrant; 2-Arc-transitive graph;
D O I
10.1016/j.jctb.2008.02.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A complete classification of 2-arc-transitive dihedrants, that is, Cayley graphs of dihedral groups is given, thus completing the study of these graphs initiated by the third author in [D. Marusic, On 2-arc-transitivity of Cayley graphs. J. Combin. Theory Ser. B 87 (2003) 162-196]. The list consists of the following graphs: (i) cycles C-2n.n >= 3; (ii) complete graphs K-2n. n >= 3: (iii) complete bipartite graphs K-n.n. n >= 3: (iv) complete bipartite graphs minus it matching K-n.n - nK(2), n >= 3; (v) incidence and nonincidence graphs B(H-11) and B'(H-11) of the Hadamard design on 11 points; (vi) incidence and nonincidence graphs B(PG(d, q)) and B'(PG(d, q)), with d >= 2 and q a prime power, of projective spaces; (vii) and an infinite family of regular Z(d)-covers K-q+1(2d) of Kq+ 1.q+ 1 - (q + 1) K-2, where q >= 3 is an odd prime power and d is a divisor of and q-1/2 and q - 1, respectively, depending on whether q equivalent to 1 (mod 4) or q equivalent to 3 (mod 4), obtained by identifying the vertex set of the base graph with two copies of the projective line PG(1, q), where the missing matching consists of all pairs of the form [i,i'], i epsilon PG(1. q). and the edge [i. j'] carries trivial voltage if i = infinity or j = infinity and carries voltage (h) over bar epsilon Z(d), the residue class of h epsilon Z, if and only if i - j = 0(h), where 0 generates the multiplicative group F-q* of the Galois field F-q. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1349 / 1372
页数:24
相关论文
共 43 条
[1]   A classification of 2-arc-transitive circulants [J].
Alspach, B ;
Conder, MDE ;
Marusic, D ;
Xu, MY .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1996, 5 (02) :83-86
[2]   2-ARC TRANSITIVE GRAPHS AND TWISTED WREATH-PRODUCTS [J].
BADDELEY, RW .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1993, 2 (03) :215-237
[3]   2-TRANSITIVE AND ANTI-FLAG TRANSITIVE COLLINEATION GROUPS OF FINITE PROJECTIVE SPACES [J].
CAMERON, PJ ;
KANTOR, WM .
JOURNAL OF ALGEBRA, 1979, 60 (02) :384-422
[4]   FINITE PERMUTATION-GROUPS AND FINITE SIMPLE-GROUPS [J].
CAMERON, PJ .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1981, 13 (JAN) :1-22
[5]  
Dixon JD., 1996, PERMUTATION GROUPS
[6]  
Djokovic D. Z., 1974, Journal of Combinatorial Theory, Series B, V16, P243, DOI 10.1016/0095-8956(74)90070-7
[7]   On 2-arc-transitive covers of complete graphs [J].
Du, SF ;
Marusic, D ;
Waller, AO .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 74 (02) :276-290
[8]   A classification of semisymmetric graphs of order 2pq [J].
Du, SF ;
Xu, MY .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (06) :2685-2715
[9]   2-Arc-transitive regular covers of complete graphs having the covering transformation group Z3p [J].
Du, SF ;
Kwak, JH ;
Xu, MY .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 93 (01) :73-93
[10]   Finite vertex primitive 2-arc regular graphs [J].
Fang, X. G. ;
Li, C. H. ;
Wang, J. .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2007, 25 (02) :125-140