Robust online Hamiltonian learning

被引:146
作者
Granade, Christopher E. [1 ,2 ]
Ferrie, Christopher [1 ,3 ]
Wlebe, Nathan [1 ,6 ]
Cory, D. G. [1 ,4 ,5 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Phys, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
[4] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada
[5] Perimeter Inst Theoret Phys, Waterloo, ON, Canada
[6] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
来源
NEW JOURNAL OF PHYSICS | 2012年 / 14卷
基金
加拿大自然科学与工程研究理事会;
关键词
QUANTUM SIMULATION; ALGORITHM; REGIONS; TIME;
D O I
10.1088/1367-2630/14/10/103013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work we combine two distinct machine learning methodologies, sequential Monte Carlo and Bayesian experimental design, and apply them to the problem of inferring the dynamical parameters of a quantum system. We design the algorithm with practicality in mind by including parameters that control trade-offs between the requirements on computational and experimental resources. The algorithm can be implemented online (during experimental data collection), avoiding the need for storage and post-processing. Most importantly, our algorithm is capable of learning Hamiltonian parameters even when the parameters change from experiment-to-experiment, and also when additional noise processes are present and unknown. The algorithm also numerically estimates the Cramer-Rao lower bound, certifying its own performance.
引用
收藏
页数:31
相关论文
共 57 条
  • [11] Intrinsic credible regions: An objective Bayesian approach to interval estimation
    Bernardo, JM
    [J]. TEST, 2005, 14 (02) : 317 - 355
  • [12] Blume-Kohout R, 2012, ARXIV12025270
  • [13] Blume-Kohout R., 2006, ARXIVQUANTPH0603116
  • [14] Incoherent noise and quantum information processing
    Boulant, N
    Emerson, J
    Havel, TF
    Cory, DG
    Furuta, S
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (07) : 2955 - 2961
  • [15] Robust method for estimating the Lindblad operators of a dissipative quantum process from measurements of the density operator at multiple time points
    Boulant, N
    Havel, TF
    Pravia, MA
    Cory, DG
    [J]. PHYSICAL REVIEW A, 2003, 67 (04): : 12
  • [16] Simplified quantum process tomography
    Branderhorst, M. P. A.
    Nunn, J.
    Walmsley, I. A.
    Kosut, R. L.
    [J]. NEW JOURNAL OF PHYSICS, 2009, 11
  • [17] QUANTUM-MECHANICS OF MEASUREMENTS DISTRIBUTED IN TIME - A PATH-INTEGRAL FORMULATION
    CAVES, CM
    [J]. PHYSICAL REVIEW D, 1986, 33 (06): : 1643 - 1665
  • [18] Christandl M, 2011, ARXIV11085329
  • [19] Practical Characterization of Quantum Devices without Tomography
    da Silva, Marcus P.
    Landon-Cardinal, Olivier
    Poulin, David
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (21)
  • [20] BAYESIAN STATISTICAL-INFERENCE FOR PSYCHOLOGICAL-RESEARCH
    EDWARDS, W
    LINDMAN, H
    SAVAGE, LJ
    [J]. PSYCHOLOGICAL REVIEW, 1963, 70 (03) : 193 - 242