Numerical simulation of electroosmotic flow in microchannels with sinusoidal roughness

被引:36
作者
Yang, Dayong [1 ]
Liu, Ying [1 ]
机构
[1] Nanchang Univ, Sch Mech & Elect Engn, Nanchang 330031, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Microchannel; Surface roughness; Sinusoidal; Electroosmotic flow; Finite element method;
D O I
10.1016/j.colsurfa.2008.06.029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electroosmotic flow (EOF) is a promising way for driving and mixing fluids in microfluidics. Aiming at the parallel-plate microchannel with sinusoidal surface roughness, this paper solves the governing equations using the finite element method and the effects of roughness element height and density on the EOF behavior are thus investigated. The simulation results indicate that the bulk flow velocity and the volumetric flow rate decrease slowly with the roughness height when the relative roughness is very small (k < 0.005) or very large (k > 0.05), while decrease quickly when the relative roughness is moderate (0.05 > k > 0.005). The flow rate and the bulk velocity decrease quickly first and then increase slowly with the roughness element density The volumetric flow rate decreases more quickly than the bulk flow velocity at the same roughness element height or density because of the decreasing of the channel cross area in the presence of the roughness. The results provide valuable insights into the optimal design of microchannel surfaces to achieve accurate flow control in microchips. (C) 2008 Elsevier B.V. All rights reserved
引用
收藏
页码:28 / 33
页数:6
相关论文
共 25 条
[1]   Liquid transport in rectangular microchannels by electroosmotic pumping [J].
Arulanandam, S ;
Li, DQ .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2000, 161 (01) :89-102
[2]   Electro-osmotic transport in charged cylindrical micro- and nano-channels [J].
Bhattacharyya, S. ;
Nayak, A. K. .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2007, 45 (01) :55-74
[3]   Electrokinetically-driven flow mixing in microchannels with wavy surface [J].
Chen, Cha'o-Kuang ;
Cho, Ching-Chang .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 312 (02) :470-480
[4]   Application of a high-pressure electro-osmotic pump using nanometer silica in capillary liquid chromatography [J].
Chen, LX ;
Guan, YF ;
Ma, JP ;
Luo, GA ;
Liu, KH .
JOURNAL OF CHROMATOGRAPHY A, 2005, 1064 (01) :19-24
[5]   Numerical simulation of mixed electroosmotic/pressure driven microflows [J].
Dutta, P ;
Beskok, A ;
Warburton, TC .
NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2002, 41 (02) :131-148
[6]   Electroosmotic flow in microchannels with prismatic elements [J].
Hu, Yandong ;
Xuan, Xiangchun ;
Werner, Carsten ;
Li, Dongqing .
MICROFLUIDICS AND NANOFLUIDICS, 2007, 3 (02) :151-160
[7]   Influence of the three-dimensional heterogeneous roughness on electrokinetic transport in microchannels [J].
Hu, YD ;
Werner, C ;
Li, DQ .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2004, 280 (02) :527-536
[8]   Electrokinetic transport through rough microchannels [J].
Hu, YD ;
Werner, C ;
Li, DQ .
ANALYTICAL CHEMISTRY, 2003, 75 (21) :5747-5758
[9]  
Hunter R. J., 1988, Zeta Potential in Colloid Science, Principles and Applications, VThird
[10]  
Kariandakis G.E., 2002, Microflows Fundamental and Simulation