CENTRAL SCHEMES FOR NONCONSERVATIVE HYPERBOLIC SYSTEMS

被引:23
作者
Castro, M. J. [1 ]
Pares, Carlos [1 ]
Puppo, Gabriella [2 ]
Russo, Giovanni [3 ]
机构
[1] Univ Malaga, E-29071 Malaga, Spain
[2] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
[3] Univ Catania, Dipartimento Matemat & Informat, I-95125 Catania, Italy
关键词
nonconservative hyperbolic systems; central schemes; well-balanced schemes; high order accuracy; Runge Kutta methods; SHALLOW-WATER EQUATIONS; FINITE-VOLUME SCHEMES; HIGH-ORDER EXTENSIONS; EFFICIENT IMPLEMENTATION; WENO SCHEMES; RECONSTRUCTION; ERROR;
D O I
10.1137/110828873
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we present a new approach to the construction of high order finite volume central schemes on staggered grids for general hyperbolic systems, including those not admitting a conservation form. The method is based on finite volume space discretization on staggered cells, central Runge-Kutta time discretization, and integration over a family of paths, associated to the system itself, for the generalization of the method to nonconservative systems. Applications to the one- and two-layer shallow water models as prototypes of systems of balance laws and systems with source terms and nonconservative products, respectively, will be illustrated.
引用
收藏
页码:B523 / B558
页数:36
相关论文
共 48 条
[1]  
Abgrall R., 2010, J COMPUT PHYS, V45, P382
[2]  
[Anonymous], 1998, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, DOI 10.1007/BFb0096355
[3]   High-order central schemes for hyperbolic systems of conservation laws [J].
Bianco, F ;
Puppo, G ;
Russo, G .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (01) :294-322
[4]  
Bouchut F., 2004, FRONT MATH
[5]   An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment [J].
Bouchut, Francois ;
Morales de Luna, Tomas .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (04) :683-698
[6]   A Q-scheme for a class of systems of coupled conservation laws with source term.: Application to a two-layer 1-D shallow water system [J].
Castro, M ;
Macías, J ;
Parés, C .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (01) :107-127
[7]   High Order Extensions of Roe Schemes for Two-Dimensional Nonconservative Hyperbolic Systems [J].
Castro, M. J. ;
Fernandez-Nieto, E. D. ;
Ferreiro, A. M. ;
Garcia-Rodriguez, J. A. ;
Pares, C. .
JOURNAL OF SCIENTIFIC COMPUTING, 2009, 39 (01) :67-114
[8]   High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products.: Applications to shallow-water systems [J].
Castro, Manuel ;
Gallardo, Jose E. M. ;
Pares, Carlos .
MATHEMATICS OF COMPUTATION, 2006, 75 (255) :1103-1134
[9]   Well-balanced high order extensions of Godunov's method for semilinear balance laws [J].
Castro, Manuel ;
Gallardo, Jose M. ;
Lopez-Garcia, Juan A. ;
Pares, Carlos .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (02) :1012-1039
[10]   Why many theories of shock waves are necessary:: Convergence error in formally path-consistent schemes [J].
Castro, Manuel J. ;
LeFloch, Philippe G. ;
Munoz-Ruiz, Maria Luz ;
Pares, Carlos .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (17) :8107-8129