A state-of-the-art review on passivation and biofouling of Ti and its alloys in marine environments

被引:177
作者
Yan, Shaokun [1 ]
Song, Guang-Ling [1 ,3 ]
Li, Zhengxian [2 ]
Wang, Haonan [2 ]
Zheng, Dajiang [1 ]
Cao, Fuyong [1 ]
Horynova, Miroslava [1 ]
Dargusch, Matthew S. [3 ]
Zhou, Lian [4 ]
机构
[1] Xiamen Univ, Coll Mat, State Key Lab Phys Chem Solid Surfaces, Ctr Marine Mat Corros & Protect, 422 S Siming Rd, Xiamen 361005, Peoples R China
[2] Northwest Inst Nonferrous Met Res, Corros & Protect Res Lab, Xian 710016, Shaanxi, Peoples R China
[3] Univ Queensland, Sch Mech & Min Engn, Ctr Adv Mat Proc & Mfg AMPAM, Brisbane, Qld 4072, Australia
[4] Nanjing Tech Univ, Nanjing 211800, Jiangsu, Peoples R China
关键词
Ti alloy; Passivity; Biofouling; SULFATE-REDUCING BACTERIA; MICROBIOLOGICALLY INFLUENCED CORROSION; ANODIC OXIDE-FILM; ELECTRIC-FIELD STRENGTH; TITANIUM-BASED IMPLANTS; POINT-DEFECT MODEL; STAINLESS-STEEL; PURE TITANIUM; PITTING CORROSION; SULFURIC-ACID;
D O I
10.1016/j.jmst.2017.11.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High strength-to-weight ratio, commendable biocompatibility and excellent corrosion resistance make Ti alloys widely applicable in aerospace, medical and marine industries. However, these alloys suffer from serious biofouling, and may become vulnerable to corrosion attack under some extreme marine conditions. The passivating and biofouling performance of Ti alloys can be attributed to their compact, stable and protective films. This paper comprehensively reviews the passivating and biofouling behavior, as well as their mechanisms, for typical Ti alloys in various marine environments. This review aims to help extend applications of Ti alloys in extremely harsh marine conditions. (C) 2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:421 / 435
页数:15
相关论文
共 221 条
[51]   Cathodic voltage-controlled electrical stimulation of titanium implants as treatment for methicillin-resistant Staphylococcus aureus periprosthetic infections [J].
Ehrensberger, Mark T. ;
Tobias, Menachem E. ;
Nodzo, Scott R. ;
Hansen, Lisa A. ;
Luke-Marshall, Nicole R. ;
Cole, Ross F. ;
Wild, Linda M. ;
Campagnari, Anthony A. .
BIOMATERIALS, 2015, 41 :97-105
[52]   Biocompatibility of β-stabilizing elements of titanium alloys [J].
Eisenbarth, E ;
Velten, D ;
Müller, M ;
Thull, R ;
Breme, J .
BIOMATERIALS, 2004, 25 (26) :5705-5713
[53]   Galvanic corrosion in the systems titanium/316 L stainless steel/Al brass in Arabian Gulf water [J].
El-Dahshan, ME ;
El Din, AMS ;
Haggag, HH .
DESALINATION, 2002, 142 (02) :161-169
[54]   OXIDE FILM FORMATION AND THICKENING ON TITANIUM IN WATER [J].
ELDIN, AMS ;
HAMMOUD, AA .
THIN SOLID FILMS, 1988, 167 (1-2) :269-280
[55]  
ElDin AMS, 1996, DESALINATION, V107, P265
[56]   Biofilm formation in vivo on perfluoro-alkylsiloxane-modified voice prostheses [J].
Everaert, EPJM ;
Mahieu, HF ;
van de Belt-Gritter, B ;
Peeters, AJGE ;
Verkerke, GJ ;
van der Mei, HC ;
Busscher, HJ .
ARCHIVES OF OTOLARYNGOLOGY-HEAD & NECK SURGERY, 1999, 125 (12) :1329-1332
[57]   Stress corrosion cracking behavior of pure titanium in iodine-alcohol solutions [J].
Farina, S. B. ;
Duffo, G. S. .
CORROSION, 2007, 63 (05) :450-461
[58]   The influence of chloride and sulphate ions on the corrosion behavior of Ti and Ti-6Al-4V alloy in oxalic acid [J].
Fekry, A. M. .
ELECTROCHIMICA ACTA, 2009, 54 (12) :3480-3489
[59]   Biofouling in water systems - cases, causes and countermeasures [J].
Flemming, HC .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2002, 59 (06) :629-640
[60]   Antimicrobial behavior of novel surfaces generated by electrophoretic deposition and breakdown anodization [J].
Flores, Jessamine Q. ;
Joung, Young Soo ;
Kinsinger, Nichola M. ;
Lu, Xinglin ;
Buie, Cullen R. ;
Walker, Sharon L. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2015, 134 :204-212