Quantum relative Lorenz curves

被引:41
作者
Buscemi, Francesco [1 ]
Gour, Gilad [2 ,3 ]
机构
[1] Nagoya Univ, Dept Comp Sci & Math Informat, Chikusa Ku, Nagoya, Aichi 4648601, Japan
[2] Univ Calgary, Inst Quantum Sci & Technol, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
[3] Univ Calgary, Dept Math & Stat, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
THERMODYNAMICS;
D O I
10.1103/PhysRevA.95.012110
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The theory of majorization and its variants, including thermomajorization, have been found to play a central role in the formulation of many physical resource theories, ranging from entanglement theory to quantum thermodynamics. Here we formulate the framework of quantum relative Lorenz curves, and show how it is able to unify majorization, thermomajorization, and their noncommutative analogs. In doing so, we define the family of Hilbert alpha divergences and show how it relates with other divergences used in quantum information theory. We then apply these tools to the problem of deciding the existence of a suitable transformation from an initial pair of quantum states to a final one, focusing in particular on applications to the resource theory of athermality, a precursor of quantum thermodynamics.
引用
收藏
页数:12
相关论文
共 34 条
[11]   Limitations on the Evolution of Quantum Coherences: Towards Fully Quantum Second Laws of Thermodynamics [J].
Cwiklinski, Piotr ;
Studzinski, Michal ;
Horodecki, Michal ;
Oppenheim, Jonathan .
PHYSICAL REVIEW LETTERS, 2015, 115 (21)
[12]   A limit of the quantum Renyi divergence [J].
Datta, Nilanjana ;
Leditzky, Felix .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (04)
[13]   Min- and Max-Relative Entropies and a New Entanglement Monotone [J].
Datta, Nilanjana .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (06) :2816-2826
[14]  
Dupuis F., 2012, P 17 INT C MATH PHYS, P134, DOI DOI 10.1142/9789814449243_0008
[15]  
EVESON SP, 1995, P LOND MATH SOC, V70, P411
[16]   The resource theory of informational nonequilibrium in thermodynamics [J].
Gour, Gilad ;
Mueller, Markus P. ;
Narasimhachar, Varun ;
Spekkens, Robert W. ;
Halpern, Nicole Yunger .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2015, 583 :1-58
[17]   Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding [J].
Hayashi, Masahito .
PHYSICAL REVIEW A, 2007, 76 (06)
[18]   THE PROPER FORMULA FOR RELATIVE ENTROPY AND ITS ASYMPTOTICS IN QUANTUM PROBABILITY [J].
HIAI, F ;
PETZ, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 143 (01) :99-114
[19]   Fundamental limitations for quantum and nanoscale thermodynamics [J].
Horodecki, Michal ;
Oppenheim, Jonathan .
NATURE COMMUNICATIONS, 2013, 4
[20]   (QUANTUMNESS IN THE CONTEXT OF) RESOURCE THEORIES [J].
Horodecki, Michal ;
Oppenheim, Jonathan .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (1-3)