Quantum relative Lorenz curves

被引:41
作者
Buscemi, Francesco [1 ]
Gour, Gilad [2 ,3 ]
机构
[1] Nagoya Univ, Dept Comp Sci & Math Informat, Chikusa Ku, Nagoya, Aichi 4648601, Japan
[2] Univ Calgary, Inst Quantum Sci & Technol, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
[3] Univ Calgary, Dept Math & Stat, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
THERMODYNAMICS;
D O I
10.1103/PhysRevA.95.012110
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The theory of majorization and its variants, including thermomajorization, have been found to play a central role in the formulation of many physical resource theories, ranging from entanglement theory to quantum thermodynamics. Here we formulate the framework of quantum relative Lorenz curves, and show how it is able to unify majorization, thermomajorization, and their noncommutative analogs. In doing so, we define the family of Hilbert alpha divergences and show how it relates with other divergences used in quantum information theory. We then apply these tools to the problem of deciding the existence of a suitable transformation from an initial pair of quantum states to a final one, focusing in particular on applications to the resource theory of athermality, a precursor of quantum thermodynamics.
引用
收藏
页数:12
相关论文
共 34 条
[1]  
Alberti P., 1980, Rep. Math. Phys., V18, P163
[2]   Discriminating states:: The quantum Chernoff bound [J].
Audenaert, K. M. R. ;
Calsamiglia, J. ;
Munoz-Tapia, R. ;
Bagan, E. ;
Masanes, Ll. ;
Acin, A. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2007, 98 (16)
[3]   EQUIVALENT COMPARISONS OF EXPERIMENTS [J].
BLACKWELL, D .
ANNALS OF MATHEMATICAL STATISTICS, 1953, 24 (02) :265-272
[4]   Reversible Framework for Quantum Resource Theories [J].
Brandao, Fernando G. S. L. ;
Gour, Gilad .
PHYSICAL REVIEW LETTERS, 2015, 115 (07)
[5]   Resource Theory of Quantum States Out of Thermal Equilibrium [J].
Brandao, Fernando G. S. L. ;
Horodecki, Michal ;
Oppenheim, Jonathan ;
Renes, Joseph M. ;
Spekkens, Robert W. .
PHYSICAL REVIEW LETTERS, 2013, 111 (25)
[6]   Degradable channels, less noisy channels, and quantum statistical morphisms: An equivalence relation [J].
Buscemi, F. .
PROBLEMS OF INFORMATION TRANSMISSION, 2016, 52 (03) :201-213
[7]  
Buscemi F., ARXIV150500535
[8]   Comparison of Quantum Statistical Models: Equivalent Conditions for Sufficiency [J].
Buscemi, Francesco .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 310 (03) :625-647
[9]   HILBERTS METRIC AND POSITIVE CONTRACTION MAPPINGS IN A BANACH-SPACE [J].
BUSHELL, PJ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1973, 52 (04) :330-338
[10]   A mathematical theory of resources [J].
Coecke, Bob ;
Fritz, Tobias ;
Spekkens, Robert W. .
INFORMATION AND COMPUTATION, 2016, 250 :59-86