Reliability analysis of safety grade decay heat removal system of Indian prototype fast breeder reactor

被引:19
作者
Arul, AJ [1 ]
Kumar, CS
Athmalingam, S
Singh, OP
Rao, KS
机构
[1] Indira Gandhi Ctr Atom Res, Kalpakkam 603102, Tamil Nadu, India
[2] AERB Safety Res Inst, Kalpakkam, Tamil Nadu, India
[3] Atom Energy Regulatory Board, Bombay, Maharashtra, India
[4] Anna Univ, Dept Ind Engn, Madras 600025, Tamil Nadu, India
关键词
D O I
10.1016/j.anucene.2005.08.001
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The 500 MW Indian pool type Prototype Fast Breeder Reactor (PFBR), is provided with two independent and diverse Decay Heat Removal (DHR) systems viz., Operating Grade Decay Heat Removal System (OGDHRS) and Safety Grade Decay Heat Removal System (SGDHRS). OGDHRS utilizes the secondary sodium loops and Steam-Water System with special decay heat removal condensers for DHR function. The unreliability of this system is of the order of 0.1-0.01. The safety requirements of the present generation of fast reactors are very high, and specifically for DHR function the failure frequency should be less than similar to IE-7/ry. Therefore, a passive SGDHR system using four completely independent thermo-siphon loops in natural convection mode is provided to ensure adequate core cooling for all Design Basis Events. The very high reliability requirement for DHR function is achieved mainly with the help of SGDHRS. This paper presents the reliability analysis of SGDHR system. Analysis is performed by Fault Tree method using 'CRAFT' software developed at Indira Gandhi Centre for Atomic Research. This software has special features for compact representation and CCF analysis of high redundancy safety systems encountered in nuclear reactors. Common Cause Failures (CCF) are evaluated by beta factor method. The reliability target for SGDHRS arrived from DHR reliability requirement and the ultimate number of demands per year (7/y) on SGDHRS is that the failure frequency should be <= 1.4E-8/de. Since it is found from the analysis that the unreliability of SGDHRS with identical loops is 5.2E-6/de and dominated by leak rates of components like AHX, DHX and sodium dump and isolation valves, options with diversity measures in important components were studied. The failure probability of SGDHRS for a design consisting of 2 types of diverse loops (Diverse AHX, DHX and sodium dump and isolation valves) is 2AE-8/de, which practically meets the reliability requirement. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:180 / 188
页数:9
相关论文
共 14 条
[1]  
ATHMALINGAM S, 2000, OPERATION NOTE SAFET
[2]  
Bisseau J., 1982, INT TOP M LMFBR SAF, V1
[3]  
Eide S.A., 1993, INT TOPICAL M CLEAR, V2, P1175
[4]   Fast reactor decay heat removal:: approach to the safety system design in Japan and Europe [J].
Farrar, B ;
Lefèvre, JC ;
Kubo, S ;
Mitchell, CH ;
Yoshinari, Y ;
Itooka, S .
NUCLEAR ENGINEERING AND DESIGN, 1999, 193 (1-2) :45-54
[5]  
FULLWOOD RR, 2000, PROBABILITISTIC SAFE
[6]  
GYR W, 1990, INT FAST REACT SAF M, V3
[7]  
HATTORI S, 1982, LOGICAL APPROACH SER, V1
[8]  
*IAEA, 1992, IAEATCDOC648
[9]  
KASINATHAN N, 2001, PFBR4700DN1001 FEB
[10]  
NATTA MHE, 1992, IAEASM32149 RNR, P549