Adaptive differential evolution with linear population reduction for parameter estimation of solar cell models

被引:0
作者
Yan, Zhen [1 ]
Gong, Wenyin [1 ]
Li, Shuijia [1 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
parameter estimation; solar cell models; differential evolution; adaptation; PHOTOVOLTAIC MODELS; SEARCH ALGORITHM; OPTIMIZATION; IDENTIFICATION; EXTRACTION;
D O I
10.1504/IJAAC.2022.10050112
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Parameter estimation of solar cell models is an important part of photovoltaic power generation system. However, it is still a challenging problem. In this study, an adaptive differential evolution with linear population reduction, called LRJADE, is developed to accurately estimate solar cell models parameters. In LRJADE, the linear population reduction strategy is employed to accelerate convergence speed. Additionally, the crossover rate repairing is also used. The performance of proposed LRJADE is verified by 13 benchmark functions and two solar cell model parameter estimation problems. Simulated results show that LRJADE not only obtains promising results in benchmark functions, but also achieves the very accurate solutions to solar cell model parameter estimation problems.
引用
收藏
页码:716 / 739
页数:25
相关论文
共 44 条
  • [1] Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm
    Abd Elaziz, Mohamed
    Oliva, Diego
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2018, 171 : 1843 - 1859
  • [2] KEEL: a software tool to assess evolutionary algorithms for data mining problems
    Alcala-Fdez, J.
    Sanchez, L.
    Garcia, S.
    del Jesus, M. J.
    Ventura, S.
    Garrell, J. M.
    Otero, J.
    Romero, C.
    Bacardit, J.
    Rivas, V. M.
    Fernandez, J. C.
    Herrera, F.
    [J]. SOFT COMPUTING, 2009, 13 (03) : 307 - 318
  • [3] Optimal extraction of solar cell parameters using pattern search
    AlHajri, M. F.
    El-Naggar, K. M.
    AlRashidi, M. R.
    Al-Othman, A. K.
    [J]. RENEWABLE ENERGY, 2012, 44 : 238 - 245
  • [4] A new estimation approach for determining the I-V characteristics of solar cells
    AlRashidi, M. R.
    AlHajri, M. F.
    El-Naggar, K. M.
    Al-Othman, A. K.
    [J]. SOLAR ENERGY, 2011, 85 (07) : 1543 - 1550
  • [5] Artificial bee swarm optimization algorithm for parameters identification of solar cell models
    Askarzadeh, Alireza
    Rezazadeh, Alireza
    [J]. APPLIED ENERGY, 2013, 102 : 943 - 949
  • [6] Parameter identification for solar cell models using harmony search-based algorithms
    Askarzadeh, Alireza
    Rezazadeh, Alireza
    [J]. SOLAR ENERGY, 2012, 86 (11) : 3241 - 3249
  • [7] Parameter identification for solar cells and module using a Hybrid Firefly and Pattern Search Algorithms
    Beigi, Amir Mohammad
    Maroosi, Ali
    [J]. SOLAR ENERGY, 2018, 171 : 435 - 446
  • [8] Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems
    Brest, Janez
    Greiner, Saso
    Boskovic, Borko
    Mernik, Marjan
    Zumer, Vijern
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) : 646 - 657
  • [9] Design of multivariable PID controller using DE-PSO
    Chaudhary, N.
    Raj, R.
    Kiran, K.
    Nema, Swapnil
    Padhy, Prabin Kumar
    [J]. INTERNATIONAL JOURNAL OF AUTOMATION AND CONTROL, 2015, 9 (03) : 173 - 185
  • [10] Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters
    Chen, Xu
    Yu, Kunjie
    [J]. SOLAR ENERGY, 2019, 180 : 192 - 206