Experimental investigation of an ejector-enhanced auto-cascade refrigeration system

被引:63
作者
Bai, Tao [1 ]
Yan, Gang [1 ]
Yu, Jianlin [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Dept Refrigerat & Cryogen Engn, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Experimental investigation; Ejector; Zeotropic refrigerant; Auto-cascade refrigeration; Exergy efficiency; CO2; HEAT-PUMP; EXERGY ANALYSIS; PERFORMANCE; CYCLE; MIXTURE; ENERGY;
D O I
10.1016/j.applthermaleng.2017.10.053
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study presents the experimental investigation of an ejector-enhanced auto-cascade refrigeration cycle (EARC) with zeotropic refrigerant R134a/R23. Performance comparisons among the EARC and two conventional cycles were conducted at selected operating conditions. The effects of ambient temperature, charged mass fraction ratio of the mixture, throttle valve opening, and heat load on the performance characteristics of the EARC were investigated. The results indicated that the EARC had more advantages in terms of lower refrigeration temperature and higher energy utilization efficiency over the conventional cycles, and the coefficient of performance (COP) and exergy efficiency improvements of the EARC reached up to 9.6% and 25.1%, respectively. The throttle valve opening was optimal with respect to the maximum system exergy efficiency determination. The refrigerant R134a/R23 with the optimal mass fraction ratio of 0.70/0.30 was proposed. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:792 / 801
页数:10
相关论文
共 27 条
[1]   Advanced exergy analysis on a modified auto-cascade freezer cycle with an ejector [J].
Bai, Tao ;
Yu, Jianlin ;
Yan, Gang .
ENERGY, 2016, 113 :385-398
[2]  
Bichev A., 1985, IZV VYSSH UZEB ZAVED, P44
[3]   Experimental investigation on the performance of a transcritical CO2 heat pump with multi-ejector expansion system [J].
Boccardi, G. ;
Botticella, F. ;
Lillo, G. ;
Mastrullo, R. ;
Mauro, A. W. ;
Trinchieri, R. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2017, 82 :389-400
[4]   Performance analysis of a modified autocascade refrigeration cycle with an additional evaporating subcooler [J].
Chen, Jiaheng ;
Yu, Jianlin ;
Yan, Gang .
APPLIED THERMAL ENGINEERING, 2016, 103 :1205-1212
[5]   A review on versatile ejector applications in refrigeration systems [J].
Chen, Jianyong ;
Jarall, Sad ;
Havtun, Hans ;
Palm, Bjorn .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 49 :67-90
[6]   A study on the cycle characteristics of an auto-cascade refrigeration system [J].
Du, Kai ;
Zhang, Shaoqian ;
Xu, Weirong ;
Niu, Xiaofeng .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2009, 33 (02) :240-245
[7]   Review of recent developments in advanced ejector technology [J].
Elbel, Stefan ;
Lawrence, Neal .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2016, 62 :1-18
[8]  
Gong MQ, 2002, AIP CONF PROC, V613, P873, DOI 10.1063/1.1472106
[9]   Experimental analysis of the R744 vapour compression rack equipped with the multiejector expansion work recovery module [J].
Haida, Michal ;
Banasiak, Krzysztof ;
Smolka, Jacek ;
Hafner, Armin ;
Eikevik, Trygve M. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2016, 64 :93-107
[10]   Experiment and simulation on the performance of an autocascade refrigeration system using carbon dioxide as a refrigerant [J].
Kim, SG ;
Kim, MS .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2002, 25 (08) :1093-1101