Vibrio cholerae, the microorganism responsible for the diarrheal disease cholera, is able to sense and respond to a variety of changing stimuli in both its aquatic and human gastrointestinal environments. Here we present a review of research efforts aimed toward understanding the signals this organism senses in the human host. V. cholerae's ability to sense and respond to temperature and pH, bile, osmolarity, oxygen and catabolite levels, nitric oxide, and mucus, as well as the quorum sensing signals produced in response to these factors will be discussed. We also review the known quorum sensing regulatory pathways and discuss their importance with regard to the regulation of virulence and colonization during infection.