Material properties of films from enzymatically tailored arabinoxylans

被引:109
作者
Hoeije, Anders [1 ]
Sternemalm, Erik [1 ]
Heikkinen, Susanna [2 ]
Tenkanen, Maija [2 ]
Gatenholm, Paul [1 ]
机构
[1] Chalmers, Dept Chem & Biol Engn, SE-41296 Gothenburg, Sweden
[2] Univ Helsinki, Dept Appl Chem & Microbiol, FIN-00014 Helsinki, Finland
关键词
D O I
10.1021/bm800290m
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rye arabinoxylan, with an initial arabinose to xylose (Ara/Xyl) ratio of 0.50, was enzymatically modified with (X-L-arabinofuranosidase. Different enzyme dosages were used to prepare arabinoxylan samples with a gradient of arabinose content varying from Ara/Xyl ratio 0.50 to 0.20. The degree of polymerization of the arabinoxylans was not affected by the enzymatic treatment, as detected with SEC-MALLS. Arabinoxylan samples with an Ara/Xyl ratio of 0.30 and below agglomerated in a water solution as seen by changes in light scattering. All samples, however, formed cohesive films upon drying, without addition of external plasticizers. The film from untreated arabinoxylan was completely amorphous; whereas films of the enzyme-treated arabinoxylans were semicrystalline with an increasing degree of crystallinity with decreasing arabinose content as determined by WAXS. Oxygen permeability measurements of the films showed that decreased arabinose content also resulted in lower oxygen permeability of the films. All films were strong and relatively stiff, but showed variations in strain at break. The moderately debranched film with an Ara/Xyl ratio of 0.37 had highest strain at break among all the films tested, yet was stiff and strong. This material also exhibited yielding and had stress/strain behavior similar to synthetic semicrystalline polymers, with a tendency to strain-induced crystallization. Such a combination of mechanical properties combined with oxygen barrier properties is very attractive for packaging applications.
引用
收藏
页码:2042 / 2047
页数:6
相关论文
共 31 条
[1]   SOLUTION PROPERTIES OF WHEAT-FLOUR ARABINOXYLANS AND ENZYMICALLY MODIFIED ARABINOXYLANS [J].
ANDREWARTHA, KA ;
PHILLIPS, DR ;
STONE, BA .
CARBOHYDRATE RESEARCH, 1979, 77 (DEC) :191-204
[2]   THE CONSTITUTION OF BARLEY HUSK HEMICELLULOSE [J].
ASPINALL, GO ;
FERRIER, RJ .
JOURNAL OF THE CHEMICAL SOCIETY, 1957, (OCT) :4188-4194
[3]   CEREAL GUMS .2. THE CONSTITUTION OF AN ARABOXYLAN FROM RYE FLOUR [J].
ASPINALL, GO ;
STURGEON, RJ .
JOURNAL OF THE CHEMICAL SOCIETY, 1957, (NOV) :4469-4471
[4]   DEGRADATION OF 2 PERIODATE-OXIDISED ARABINOXYLANS [J].
ASPINALL, GO ;
ROSS, KM .
JOURNAL OF THE CHEMICAL SOCIETY, 1963, (MAR) :1681-&
[5]   ISOLATION AND CHEMICAL CHARACTERIZATION OF WATER-SOLUBLE ARABINOXYLANS IN RYE GRAIN [J].
BENGTSSON, S ;
AMAN, P .
CARBOHYDRATE POLYMERS, 1990, 12 (03) :267-277
[6]  
Ebringerová A, 2000, MACROMOL RAPID COMM, V21, P542
[7]   Separation, characterization and hydrogel-formation of hemicellulose from aspen wood [J].
Gabrielii, I ;
Gatenholm, P ;
Glasser, WG ;
Jain, RK ;
Kenne, L .
CARBOHYDRATE POLYMERS, 2000, 43 (04) :367-374
[8]   Isolation options for non-cellulosic heteropolysaccharides (HetPS) [J].
Glasser, WG ;
Kaar, WE ;
Jain, RK ;
Sealey, JE .
CELLULOSE, 2000, 7 (03) :299-317
[9]   Material properties of plasticized hardwood Xylans for potential application as oxygen barrier films [J].
Gröndahl, M ;
Eriksson, L ;
Gatenholm, P .
BIOMACROMOLECULES, 2004, 5 (04) :1528-1535
[10]  
Gröndahl M, 2007, ACS SYM SER, V954, P137