Multi-objective evolutionary particle swarm optimization in the assessment of the impact of distributed generation

被引:43
作者
Maciel, Renan S. [1 ]
Rosa, Mauro [2 ,3 ]
Miranda, Vladimiro [2 ,3 ]
Padilha-Feltrin, Antonio [1 ]
机构
[1] Sao Paulo State Univ, UNESP, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, Brazil
[2] INESCPorto, USE Power Syst Unit, P-4200465 Oporto, Portugal
[3] Univ Porto, FEUP, Fac Engn, P-4200465 Oporto, Portugal
基金
巴西圣保罗研究基金会;
关键词
Distributed generation planning; Multi-objective optimization; Evolutionary particle swarm optimization; Genetic Algorithm; Tabu Search;
D O I
10.1016/j.epsr.2012.02.018
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a multi-objective approach to a distribution network planning process that deals with the challenges derived from the integration of Distributed Generation (DG). The proposal consists of a multi-objective version of the well-known Evolutionary Particle Swarm Optimization method (MEPSO). A broad performance comparison is made between the MEPSO and other multi-objective optimization meta-heuristics, the Non-dominated Sorting Genetic Algorithm II (NSGA-II) and a Multi-objective Tabu Search (MOTS), using two distribution networks in a given DG penetration scenario. Although the three methods proved to be applicable in distribution system planning, the MEPSO algorithm has presented promising attributes and a constant and high level performance when compared to other methods. (C) 2012 Elsevier BM. All rights reserved.
引用
收藏
页码:100 / 108
页数:9
相关论文
共 25 条
[1]   Multi Objective Distributed Generation Planning Using NSGA-II [J].
Ahmadi, Muhammad ;
Yousefi, Ashkan ;
Soroudi, Alireza ;
Ehsan, Mehdi .
2008 13TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE, VOLS 1-5, 2008, :1847-+
[2]   Multi-objective planning framework for stochastic and controllable distributed energy resources [J].
Alarcon-Rodriguez, A. ;
Haesen, E. ;
Ault, G. ;
Driesen, J. ;
Belmans, R. .
IET RENEWABLE POWER GENERATION, 2009, 3 (02) :227-238
[3]   Multi-objective planning of distributed energy resources: A review of the state-of-the-art [J].
Alarcon-Rodriguez, Arturo ;
Ault, Graham ;
Galloway, Stuart .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (05) :1353-1366
[4]  
[Anonymous], 2007, EVOLUTIONARY ALGORIT
[5]  
Baykasoglu A., 1994, J ENG OPTIM, V4, P159
[6]   Optimisation of embedded generation sizing and siting by using a double trade-off method [J].
Carpinelli, G ;
Celli, G ;
Mocci, S ;
Pilo, F ;
Russo, A .
IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION, 2005, 152 (04) :503-513
[7]   A multiobjective evolutionary algorithm for the sizing and siting of distributed generation [J].
Celli, G ;
Ghiani, E ;
Mocci, S ;
Pilo, F .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2005, 20 (02) :750-757
[8]  
CHENG CS, 1995, IEEE T POWER SYST, V10, P671, DOI 10.1109/59.387902
[9]  
Cohon J.L., 2003, MULTIOBJECTIVE PROGR
[10]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197