Valuations and surface area measures

被引:48
作者
Haberl, Christoph [1 ]
Parapatits, Lukas [1 ]
机构
[1] Salzburg Univ, A-5020 Salzburg, Austria
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2014年 / 687卷
基金
奥地利科学基金会;
关键词
MINKOWSKI-FIREY THEORY; INVARIANT VALUATIONS; AFFINE; BODIES;
D O I
10.1515/crelle-2012-0044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider valuations defined on polytopes containing the origin which have measures on the sphere as values. We show that the classical surface area measure is essentially the only such valuation which is SL(n) contravariant of degree one. Moreover, for all real p, an L-p version of the above result is established for GL(n) contravariant valuations of degree p. This provides a characterization of the L-p surface area measures from the L-p Brunn-Minkowski theory.
引用
收藏
页码:225 / 245
页数:21
相关论文
共 43 条
[1]  
Aczel J., 1989, ENGLISH, V31, pxiii + 462
[2]   Description of translation invariant valuations on convex sets with solution of P. McMullen's conjecture [J].
Alesker, S .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (02) :244-272
[3]   Harmonic Analysis of Translation Invariant Valuations [J].
Alesker, Semyon ;
Bernig, Andreas ;
Schuster, Franz E. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2011, 21 (04) :751-773
[4]   Hermitian integral geometry [J].
Bernig, Andreas ;
Fu, Joseph H. G. .
ANNALS OF MATHEMATICS, 2011, 173 (02) :907-945
[5]   The Lp-Minkowski problem and the Minkowski problem in centroaffine geometry [J].
Chou, Kai-Seng ;
Wang, Xu-Jia .
ADVANCES IN MATHEMATICS, 2006, 205 (01) :33-83
[6]   Affine Moser-Trudinger and Morrey-Sobolev inequalities [J].
Cianchi, Andrea ;
Lutwak, Erwin ;
Yang, Deane ;
Zhang, Gaoyong .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 36 (03) :419-436
[7]  
Fu JHG, 2006, J DIFFER GEOM, V72, P509
[8]  
Gardner R. J., 2006, ENCY MATH APPL, V58
[9]  
Gardner RJ, 1999, INDIANA U MATH J, V48, P593
[10]  
GRUBER P.M., 2007, Grundlehren der Mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences, V336