Learning Feynman Diagrams with Tensor Trains

被引:29
|
作者
Fernandez, Yuriel Nunez [1 ]
Jeannin, Matthieu [1 ]
Dumitrescu, Philipp T. [2 ]
Kloss, Thomas [1 ,3 ]
Kaye, Jason [2 ,4 ]
Parcollet, Olivier [2 ,5 ]
Waintal, Xavier [1 ]
机构
[1] Univ Grenoble Alpes, CEA, Grenoble INP, IRIG,Pheliqs, F-38000 Grenoble, France
[2] Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA
[3] Univ Grenoble Alpes, Inst Neel, CNRS, F-38000 Grenoble, France
[4] Flatiron Inst, Ctr Computat Math, 162 5th Ave, New York, NY 10010 USA
[5] Univ Paris Saclay, Inst Phys Theor, CNRS, CEA, F-91191 Gif Sur Yvette, France
关键词
QUANTUM; APPROXIMATION; MATRIX; QUASIOPTIMALITY;
D O I
10.1103/PhysRevX.12.041018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use tensor network techniques to obtain high-order perturbative diagrammatic expansions for the quantum many-body problem at very high precision. The approach is based on a tensor train parsimonious representation of the sum of all Feynman diagrams, obtained in a controlled and accurate way with the tensor cross interpolation algorithm. It yields the full time evolution of physical quantities in the presence of any arbitrary time-dependent interaction. Our benchmarks on the Anderson quantum impurity problem, within the real-time nonequilibrium Schwinger-Keldysh formalism, demonstrate that this technique supersedes diagrammatic quantum Monte Carlo by orders of magnitude in precision and speed, with convergence rates 1/N2 or faster, where N is the number of function evaluations. The method also works in parameter regimes characterized by strongly oscillatory integrals in high dimension, which suffer from a catastrophic sign problem in quantum Monte Carlo calculations. Finally, we also present two exploratory studies showing that the technique generalizes to more complex situations: a double quantum dot and a single impurity embedded in a two-dimensional lattice.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Combinatorial summation of Feynman diagrams
    Kozik, Evgeny
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [2] Feynman diagrams: visualization of phenomena and diagrammatic representation
    Forgione, Marco
    EUROPEAN JOURNAL FOR PHILOSOPHY OF SCIENCE, 2024, 14 (04)
  • [3] Learning tensor networks with tensor cross interpolation: New algorithms and libraries
    Fernandez, Yuriel Nunez
    Ritter, Marc K.
    Jeannin, Matthieu
    Li, Jheng-Wei
    Kloss, Thomas
    Louvet, Thibaud
    Terasaki, Satoshi
    Parcollet, Olivier
    von Delft, Jan
    Shinaoka, Hiroshi
    Waintal, Xavier
    SCIPOST PHYSICS, 2025, 18 (03):
  • [4] The magic of Feynman's QED: from field-less electrodynamics to the Feynman diagrams
    Darrigol, Olivier
    EUROPEAN PHYSICAL JOURNAL H, 2019, 44 (4-5) : 349 - 369
  • [5] Tensor Diagrams and Chebyshev Polynomials
    Lamberti, Lisa
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (20) : 7218 - 7278
  • [6] Sobol tensor trains for global sensitivity analysis
    Ballester-Ripoll, Rafael
    Paredes, Enrique G.
    Pajarola, Renato
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2019, 183 (311-322) : 311 - 322
  • [7] Contraction Heuristics for Tensor Decision Diagrams
    Larsen, Christian Bogh
    Olsen, Simon Brun
    Larsen, Kim Guldstrand
    Schilling, Christian
    ENTROPY, 2024, 26 (12)
  • [8] Classical gravitational scattering at O(G3) from Feynman diagrams
    Cheung, Clifford
    Solon, Mikhail P.
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, (06):
  • [9] Direct Solution of the Chemical Master Equation Using Quantized Tensor Trains
    Kazeev, Vladimir
    Khammash, Mustafa
    Nip, Michael
    Schwab, Christoph
    PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (03)
  • [10] Deep Model Compression and Inference Speedup of Sum-Product Networks on Tensor Trains
    Ko, Ching-Yun
    Chen, Cong
    He, Zhuolun
    Zhang, Yuke
    Batselier, Kim
    Wong, Ngai
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (07) : 2665 - 2671