Ultrasound assisted synthesis of reduced graphene oxide (rGO) supported InVO4-TiO2 nanocomposite for efficient hydrogen production

被引:56
作者
Hafeez, Hafeez Yusuf [1 ]
Lakhera, Sandeep Kumar [2 ]
Ashokkumar, Muthupandian [3 ]
Neppolian, Bernaurdshaw [1 ]
机构
[1] SRM Inst Sci & Technol, SRM Res Inst, Chennai 603203, Tamil Nadu, India
[2] SRM Inst Sci & Technol, Dept Phys & Nanotechnol, Chennai 603203, Tamil Nadu, India
[3] Univ Melbourne, Sch Chem, Parkville, Vic, Australia
关键词
Ultrasound; Titanium dioxide; Indium vanadate; rGO; H2; evolution; Water-splitting; PHOTOCATALYTIC ACTIVITY; TIO2; NANOPARTICLES; MECHANISM; HETEROSTRUCTURES; CONSTRUCTION; PERFORMANCE; FABRICATION;
D O I
10.1016/j.ultsonch.2018.12.009
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Herein, a ternary nanocomposite, comprising metal oxide (InVO4 and TiO2) photocatalysts supported on rGO sheets was prepared via the hydrothermal method in the presence and absence of ultrasound irradiation. The photocatalytic performance of the prepared rGO/InVO4-TiO2 nanocomposites was evaluated for H-2 evolution activity from water splitting with glycerol as a sacrificial agent. Interestingly, a synergistic effect (6-fold) was observed with rGO/InVO4-TiO2 nanocomposite prepared with the help of ultrasound compared to the samples prepared without ultrasound. The optimized nanocomposite (rGO/InVO4-TiO2) exhibited a maximum H-2 evolution of 1669 pmol h(-1), a similar to 13-fold enhancement compared to the bare TiO2. This remarkable enhancement is mainly due to the synergistic effect induced by ultrasonic irradiation along with the shifting of the optical band gap of TiO2 from 3.20 eV to 2.80 eV by loading of InVO4 and rGO and also strong chemical bonding between metal (Ti) and C through Ti-C bond formation, as identified by UV-vis DRS spectra and XPS spectra, respectively. Moreover, a significant quenching of PL emission intensity and smaller radius arc of the Nyquist plot in the EIS were observed when the rGO and InVO4 were loaded in TiO2, indicating the efficient charge carriers separation and transfer in the presence of rGO sheet, resulting in enhanced photocatalytic activity. Thus, application of ultrasound has played significant and important roles in substantially enhancing hydrogen evolution along with rGO and InVO4 acting as support and co-catalyst, respectively.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 54 条
[1]   Synthesis and Characterization of Rutile TiO2 Nanopowders Doped with Iron Ions [J].
Abazovic, Nadica D. ;
Mirenghi, Luciana ;
Jankovic, Ivana A. ;
Bibic, Natasa ;
Sojic, Daniela V. ;
Abramovic, Biljana F. ;
Comor, Mirjana I. .
NANOSCALE RESEARCH LETTERS, 2009, 4 (06) :518-525
[2]  
Bellamkonda S., 2017, CATAL TODAY, DOI [10.1016/j, DOI 10.1016/J]
[3]   Synthesis of C60-decorated SWCNTs (C60-d-CNTs) and its TiO2-based nanocomposite with enhanced photocatalytic activity for hydrogen production [J].
Chai, Bo ;
Peng, Tianyou ;
Zhang, Xiaohu ;
Mao, Jing ;
Li, Kan ;
Zhang, Xungao .
DALTON TRANSACTIONS, 2013, 42 (10) :3402-3409
[4]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[5]   Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics [J].
Eda, Goki ;
Chhowalla, Manish .
ADVANCED MATERIALS, 2010, 22 (22) :2392-2415
[6]   Novel visible-light-responding InVO4-Cu2O-TiO2 ternary nanoheterostructure: Preparation and photocatalytic characteristics [J].
Feng, Haibo ;
Li, Yaping ;
Luo, Dongming ;
Tan, Gongrong ;
Jiang, Jianbo ;
Yuan, Huimin ;
Peng, Sanjun ;
Qian, Dong .
CHINESE JOURNAL OF CATALYSIS, 2016, 37 (06) :855-862
[7]   Using sonochemistry for the fabrication of nanomaterials [J].
Gedanken, A .
ULTRASONICS SONOCHEMISTRY, 2004, 11 (02) :47-55
[8]  
Gedanken A, 2001, CHEM-EUR J, V7, P4546, DOI 10.1002/1521-3765(20011105)7:21<4546::AID-CHEM4546>3.0.CO
[9]  
2-L
[10]  
Hafeez Hafeez Yusuf, APPL SURF, V449, P772