Finite element formulation of various four unknown shear deformation theories for functionally graded plates

被引:105
作者
Thai, Huu-Tai [1 ]
Choi, Dong-Ho [1 ]
机构
[1] Hanyang Univ, Dept Civil & Environm Engn, Seoul 133791, South Korea
基金
新加坡国家研究基金会;
关键词
Finite element formulation; Functionally graded plate; Shear deformation theory; Bending; Vibration; HIGHER-ORDER SHEAR; FREE-VIBRATION ANALYSIS; BUCKLING ANALYSIS; MLPG METHOD; EFFICIENT;
D O I
10.1016/j.finel.2013.07.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, finite element formulation of various four unknown shear deformation theories is presented for the bending and vibration analyses of functionally graded plates. The present theories have strong similarity with the classical plate theory and accounts for shear deformation effects without using any shear correction factors. A four-node quadrilateral finite element is developed using Lagrangian and Hermitian interpolation functions to describe the primary variables corresponding to the in-plane displacements and transverse displacement, respectively. Material properties are assumed to be graded in the thickness direction according to a power-law distribution in terms of volume fractions of the constituents. Convergence test and comparison studies are performed for thin and very thick plates to demonstrate the accuracy of the present formulation. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:50 / 61
页数:12
相关论文
共 47 条
[21]   A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates [J].
Neves, A. M. A. ;
Ferreira, A. J. M. ;
Carrera, E. ;
Cinefra, M. ;
Roque, C. M. C. ;
Jorge, R. M. N. ;
Soares, C. M. M. .
COMPOSITE STRUCTURES, 2012, 94 (05) :1814-1825
[22]   A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates [J].
Neves, A. M. A. ;
Ferreira, A. J. M. ;
Carrera, E. ;
Roque, C. M. C. ;
Cinefra, M. ;
Jorge, R. M. N. ;
Soares, C. M. M. .
COMPOSITES PART B-ENGINEERING, 2012, 43 (02) :711-725
[23]   Analysis of functionally graded plates by an efficient finite element method with node-based strain smoothing [J].
Nguyen-Xuan, H. ;
Tran, Loc V. ;
Thai, Chien H. ;
Nguyen-Thoi, T. .
THIN-WALLED STRUCTURES, 2012, 54 :1-18
[24]   Analysis of functionally graded plates using an edge-based smoothed finite element method [J].
Nguyen-Xuan, H. ;
Tran, Loc V. ;
Nguyen-Thoi, T. ;
Vu-Do, H. C. .
COMPOSITE STRUCTURES, 2011, 93 (11) :3019-3039
[25]   Free vibration analysis of functionally graded curved panels using a higher-order finite element formulation [J].
Pradyumna, S. ;
Bandyopadhyay, J. N. .
JOURNAL OF SOUND AND VIBRATION, 2008, 318 (1-2) :176-192
[26]   Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method [J].
Qian, LF ;
Batra, RC ;
Chen, LM .
COMPOSITES PART B-ENGINEERING, 2004, 35 (6-8) :685-697
[27]  
Qian LF, 2003, CMES-COMP MODEL ENG, V4, P519
[28]   A SIMPLE HIGHER-ORDER THEORY FOR LAMINATED COMPOSITE PLATES [J].
REDDY, JN .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1984, 51 (04) :745-752
[29]  
Reddy JN, 2000, INT J NUMER METH ENG, V47, P663, DOI 10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO
[30]  
2-8