Semiempirical thermodynamic modeling of a direct methanol fuel cell system

被引:18
作者
Ince, Alper Can [1 ,2 ]
Karaoglan, Mustafa Umut [1 ,3 ]
Gluesen, Andreas [4 ]
Colpan, C. Ozgur [1 ,3 ]
Mueller, Martin [4 ]
Stolten, Detlef [4 ,5 ]
机构
[1] Dokuz Eylul Univ, Mech Engn Dept, Grad Sch Nat & Appl Sci, TR-35397 Izmir, Turkey
[2] Gebze Tech Univ, Mech Engn Dept, Fac Engn, TR-41400 Kocaeli, Turkey
[3] Dokuz Eylul Univ, Mech Engn Dept, Fac Engn, TR-35397 Izmir, Turkey
[4] Forschungszentrum Julich, Inst Energy & Climate Res Electrochem Proc Engn I, D-52425 Julich, Germany
[5] Rhein Westfal TH Aachen, Chair Fuel Cells, D-52072 Aachen, Germany
关键词
condenser outlet temperature; direct methanol fuel cell; electrical efficiency; semiempirical; thermodynamics; WATER CROSSOVER; OPERATING PARAMETERS; DMFC SYSTEM; PERFORMANCE; MEMBRANE; SIMULATION; CHALLENGE; POWER;
D O I
10.1002/er.4508
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this study, a thermodynamic model of an active direct methanol fuel cell (DMFC) system, which couples in-house experimental data for the DMFC with the mass and energy balances for the system components (condenser, mixing vessel, blower, and pumps), is formed. The modeling equations are solved using the Engineering Equation Solver (EES) program. This model gives the mass fluxes and thermodynamic properties of fluids for each state, heat and work transfer between the components and their surroundings, and electrical efficiency of the system. The effect of the methanol concentration (between 0.5 and 1.25 M) and air flow rate (between 20 and 30 mL cm(-2) min(-1)) on the net power output and electrical efficiency of the system and the condenser outlet temperature is investigated. The results essentially showed that the highest value for the electrical efficiency of the system is 23.6% when the current density, methanol concentration, and air flow rate are taken as 0.2 A cm(-2), 0.75 M, and 20 mL cm(-2) min(-1), respectively. In addition, the air flow rate was found to be the most significant parameter affecting the condenser outlet temperature.
引用
收藏
页码:3601 / 3615
页数:15
相关论文
共 50 条
[31]   Mathematical Modeling of a Direct Methanol Fuel Cell with a Novel Structured MEA [J].
Suo, Chunguang ;
Zhang, Wenbin ;
Quan, Xiaohong .
MICRO-NANO TECHNOLOGY XIV, PTS 1-4, 2013, 562-565 :1495-+
[32]   Modeling of Direct Methanol Fuel Cell Using the Artificial Neural Network [J].
Tafazoli, Mehdi ;
Baseri, Hamid ;
Alizadeh, Ebrahim ;
Shakeri, Mohsen .
JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2013, 10 (04)
[33]   Electronspun nanofiber network anode for a passive direct methanol fuel cell [J].
Chen, Peng ;
Wu, Huijuan ;
Yuan, Ting ;
Zou, Zhiqing ;
Zhang, Haifeng ;
Zheng, Junwei ;
Yang, Hui .
JOURNAL OF POWER SOURCES, 2014, 255 :70-75
[34]   Numerical investigations of effect of membrane electrode assembly structure on water crossover in a liquid-feed direct methanol fuel cell [J].
Yang, W. W. ;
Zhao, T. S. .
JOURNAL OF POWER SOURCES, 2009, 188 (02) :433-446
[35]   A composite anode with reactive methanol filter for direct methanol fuel cell [J].
Wan, Chieh-Hao ;
Lin, Chien-Heng .
JOURNAL OF POWER SOURCES, 2009, 186 (02) :229-237
[36]   Modeling and simulation of a direct ethanol fuel cell: An overview [J].
Abdullah, S. ;
Kamarudin, S. K. ;
Hasran, U. A. ;
Masdar, M. S. ;
Daud, W. R. W. .
JOURNAL OF POWER SOURCES, 2014, 262 :401-406
[37]   An overview of fuel management in direct methanol fuel cells [J].
Kamaruddin, M. Z. F. ;
Kamarudin, S. K. ;
Daud, W. R. W. ;
Masdar, M. S. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 24 :557-565
[38]   Exergy analysis of a passive direct methanol fuel cell [J].
Bahrami, Hafez ;
Faghri, Amir .
JOURNAL OF POWER SOURCES, 2011, 196 (03) :1191-1204
[39]   Characterization of The Pretreatment Effect on a Direct Methanol Fuel Cell [J].
Kuan, Yean-Der ;
Chiang, Ming-Chien ;
Chang, Jing-Yi ;
Lee, Shi-Min .
JOURNAL OF THE CHINESE SOCIETY OF MECHANICAL ENGINEERS, 2011, 32 (04) :285-292
[40]   Empirical Model Equations for the Direct Methanol Fuel Cell [J].
Argyropoulos, P. ;
Scott, K. ;
Shukla, A. K. ;
Jackson, C. .
FUEL CELLS, 2003, 2 (02) :78-82