Semiempirical thermodynamic modeling of a direct methanol fuel cell system

被引:18
作者
Ince, Alper Can [1 ,2 ]
Karaoglan, Mustafa Umut [1 ,3 ]
Gluesen, Andreas [4 ]
Colpan, C. Ozgur [1 ,3 ]
Mueller, Martin [4 ]
Stolten, Detlef [4 ,5 ]
机构
[1] Dokuz Eylul Univ, Mech Engn Dept, Grad Sch Nat & Appl Sci, TR-35397 Izmir, Turkey
[2] Gebze Tech Univ, Mech Engn Dept, Fac Engn, TR-41400 Kocaeli, Turkey
[3] Dokuz Eylul Univ, Mech Engn Dept, Fac Engn, TR-35397 Izmir, Turkey
[4] Forschungszentrum Julich, Inst Energy & Climate Res Electrochem Proc Engn I, D-52425 Julich, Germany
[5] Rhein Westfal TH Aachen, Chair Fuel Cells, D-52072 Aachen, Germany
关键词
condenser outlet temperature; direct methanol fuel cell; electrical efficiency; semiempirical; thermodynamics; WATER CROSSOVER; OPERATING PARAMETERS; DMFC SYSTEM; PERFORMANCE; MEMBRANE; SIMULATION; CHALLENGE; POWER;
D O I
10.1002/er.4508
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this study, a thermodynamic model of an active direct methanol fuel cell (DMFC) system, which couples in-house experimental data for the DMFC with the mass and energy balances for the system components (condenser, mixing vessel, blower, and pumps), is formed. The modeling equations are solved using the Engineering Equation Solver (EES) program. This model gives the mass fluxes and thermodynamic properties of fluids for each state, heat and work transfer between the components and their surroundings, and electrical efficiency of the system. The effect of the methanol concentration (between 0.5 and 1.25 M) and air flow rate (between 20 and 30 mL cm(-2) min(-1)) on the net power output and electrical efficiency of the system and the condenser outlet temperature is investigated. The results essentially showed that the highest value for the electrical efficiency of the system is 23.6% when the current density, methanol concentration, and air flow rate are taken as 0.2 A cm(-2), 0.75 M, and 20 mL cm(-2) min(-1), respectively. In addition, the air flow rate was found to be the most significant parameter affecting the condenser outlet temperature.
引用
收藏
页码:3601 / 3615
页数:15
相关论文
共 50 条
  • [21] Two-phase modeling of mass transfer characteristics of a direct methanol fuel cell
    He, Ya-Ling
    Li, Xiang-Lin
    Miao, Zheng
    Liu, Ying-Wen
    [J]. APPLIED THERMAL ENGINEERING, 2009, 29 (10) : 1998 - 2008
  • [22] Two-Phase Flow Modeling of Direct Methanol Fuel Cell Anode Compartment
    Kablou, Y.
    Matida, E.
    Cruickshank, C.
    [J]. FUEL CELLS, 2019, 19 (05) : 594 - 608
  • [23] Modeling of dynamic operating behaviors in a liquid-feed direct methanol fuel cell
    Yang, W. W.
    He, Y. L.
    Li, Y. S.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (23) : 18412 - 18424
  • [24] Numerical analysis for a vapor feed miniature direct methanol fuel cell system
    Xiao, Bin
    Faghri, Amir
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (15-16) : 3525 - 3533
  • [25] NUMERICAL ANALYSIS FOR A VAPOR FEED MINIATURE DIRECT METHANOL FUEL CELL SYSTEM
    Xiao, Bin
    Faghri, Amir
    [J]. HT2008: PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE, VOL 1, 2009, : 87 - 97
  • [26] Comprehensive mass transport modeling technique for the cathode side of an open-cathode direct methanol fuel cell
    Mudiraj, S. P.
    Biswas, M. A. R.
    Lear, W. E.
    Crisalle, O. D.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (25) : 8137 - 8159
  • [27] Comparison of single-cell testing, short-stack testing and mathematical modeling methods for a direct methanol fuel cell
    Karaoglan, Mustafa Umut
    Ince, Alper Can
    Glusen, Andreas
    Colpan, C. Ozgur
    Mueller, Martin
    Stolten, Detlef
    Kuralay, Nusret Sefa
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (06) : 4844 - 4856
  • [28] Modeling of high-efficient direct methanol fuel cells with order-structured catalyst layer
    Jiang, Jinghui
    Li, Yinshi
    Liang, Jiarong
    Yang, Weiwei
    Li, Xianglin
    [J]. APPLIED ENERGY, 2019, 252
  • [29] A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages
    Wang, Y
    Li, L
    Hu, L
    Zhuang, L
    Lu, JT
    Xu, BQ
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (08) : 662 - 666
  • [30] Modeling of the anode side of a direct methanol fuel cell with analytical solutions
    Mosquera, Martin A.
    Lizcano-Valbuena, William H.
    [J]. ELECTROCHIMICA ACTA, 2009, 54 (04) : 1233 - 1239