A connection between a system of random walks and rumor transmission

被引:17
作者
Lebensztayn, E. [1 ]
Rodriguez, P. M. [2 ]
机构
[1] Univ Estadual Campinas, UNICAMP, Inst Matemat Estat & Comp Cient, BR-13083859 Campinas, SP, Brazil
[2] Univ Sao Paulo, Inst Ciencias Matemat & Comp, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Rumor transmission; Random walk; Maki-Thompson model; Frog model; EPIDEMIC MODEL; COMPLETE GRAPH; FROG MODEL; PROPORTION; NETWORKS;
D O I
10.1016/j.physa.2013.07.073
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish a relationship between the phenomenon of rumor transmission on a population and a probabilistic model of interacting particles on the complete graph. More precisely, we consider variations of the Maki-Thompson epidemic model and the "frog model" of random walks, which were introduced in the scientific literature independently and in different contexts. We analyze the Markov chains which describe these models, and show a coupling between them. Our connection shows how the propagation of a rumor in a closed homogeneously mixing population can be described by a system of random walks on the complete graph. Additionally, we discuss further applications of the random walk model which are relevant to the modeling of different biological dynamics. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:5793 / 5800
页数:8
相关论文
共 21 条
[1]  
Alves OSM, 2002, ANN APPL PROBAB, V12, P533
[2]   Random walks systems on complete graphs [J].
Alves, Oswaldo S. M. ;
Lebensztayn, Elcio ;
Machado, Fabio P. ;
Martinez, Mauricio Z. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2006, 37 (04) :571-580
[3]  
[Anonymous], 2002, Electron. J. Probab
[4]   Rumours with general initial conditions [J].
Belen, S ;
Pearce, CEM .
ANZIAM JOURNAL, 2004, 45 :393-400
[5]  
BELEN S, 2008, THESIS U ADELAIDE AU
[6]   A Spatial Stochastic Model for Rumor Transmission [J].
Coletti, Cristian F. ;
Rodriguez, Pablo M. ;
Schinazi, Rinaldo B. .
JOURNAL OF STATISTICAL PHYSICS, 2012, 147 (02) :375-381
[7]   EPIDEMICS + RUMOURS [J].
DALEY, DJ ;
KENDALL, DG .
NATURE, 1964, 204 (496) :1118-&
[8]  
Daley DJ, 1999, EPIDEMIC MODELLING I
[9]  
Kurtz TG, 2008, ALEA-LAT AM J PROBAB, V4, P45
[10]   An improved upper bound for the critical probability of the frog model on homogeneous trees [J].
Lebensztayn, É ;
Machado, FP ;
Popov, S .
JOURNAL OF STATISTICAL PHYSICS, 2005, 119 (1-2) :331-345