In silicoMethod in CRISPR/Cas System: An Expedite and Powerful Booster

被引:9
作者
Zhang, Yuwei [1 ,2 ,3 ]
Zhao, Guofang [1 ,3 ]
Ahmed, Fatma Yislam Hadi [2 ]
Yi, Tianfei [2 ]
Hu, Shiyun [2 ]
Cai, Ting [1 ,3 ]
Liao, Qi [1 ,2 ,3 ]
机构
[1] Univ Chinese Acad Sci, Hwa Mei Hosp, Ningbo, Peoples R China
[2] Ningbo Univ, Sch Med, Dept Preventat Med, Zhejiang Key Lab Pathophysiol, Ningbo, Peoples R China
[3] Univ Chinese Acad Sci, Ningbo Inst Life & Hlth Ind, Ningbo, Peoples R China
来源
FRONTIERS IN ONCOLOGY | 2020年 / 10卷
基金
中国国家自然科学基金;
关键词
CRISPR; Cas system; In silicomethods; Cas system identification; guide RNA design; post-experimental assistance; GUIDE RNA; GENETIC SCREENS; SGRNA DESIGN; HUMAN-CELLS; CRISPR-CAS9; TOOL; DNA; PREDICTION; IDENTIFICATION; VISUALIZATION;
D O I
10.3389/fonc.2020.584404
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The CRISPR/Cas system has stood in the center of attention in the last few years as a revolutionary gene editing tool with a wide application to investigate gene functions. However, the labor-intensive workflow requires a sophisticated pre-experimental and post-experimental analysis, thus becoming one of the hindrances for the further popularization of practical applications. Recently, the increasing emergence and advancement of thein silicomethods play a formidable role to support and boost experimental work. However, various tools based on distinctive design principles and frameworks harbor unique characteristics that are likely to confuse users about how to choose the most appropriate one for their purpose. In this review, we will present a comprehensive overview and comparisons on thein silicomethods from the aspects of CRISPR/Cas system identification, guide RNA design, and post-experimental assistance. Furthermore, we establish the hypotheses in light of the new trends around the technical optimization and hope to provide significant clues for future tools development.
引用
收藏
页数:20
相关论文
共 181 条
  • [1] A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action
    Abadi, Shiran
    Yan, Winston X.
    Amar, David
    Mayrose, Itay
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (10)
  • [2] MacSyFinder: A Program to Mine Genomes for Molecular Systems with an Application to CRISPR-Cas Systems
    Abby, Sophie S.
    Neron, Bertrand
    Menager, Herve
    Touchon, Marie
    Rocha, Eduardo P. C.
    [J]. PLOS ONE, 2014, 9 (10):
  • [3] In vivo CRISPR editing with no detectable genome-wide off-target mutations
    Akcakaya, Pinar
    Bobbin, Maggie L.
    Guo, Jimmy A.
    Malagon-Lopez, Jose
    Clement, Kendell
    Garcia, Sara P.
    Fellows, Mick D.
    Porritt, Michelle J.
    Firth, Mike A.
    Carreras, Alba
    Baccega, Tania
    Seeliger, Frank
    Bjursell, Mikael
    Tsai, Shengdar Q.
    Nguyen, Nhu T.
    Nitsch, Roberto
    Mayr, Lorenz M.
    Pinello, Luca
    Bohlool-Y, Mohammad
    Aryee, Martin J.
    Maresca, Marcello
    Joung, J. Keith
    [J]. NATURE, 2018, 561 (7723) : 416 - +
  • [4] CRISPR-Cas9 off-targeting assessment with nucleic acid duplex energy parameters
    Alkan, Ferhat
    Wenzel, Anne
    Anthon, Christian
    Havgaard, Jakob Hull
    Gorodkin, Jan
    [J]. GENOME BIOLOGY, 2018, 19
  • [5] Characterizing leader sequences of CRISPR loci
    Alkhnbashi, Omer S.
    Shah, Shiraz A.
    Garrett, Roger A.
    Saunders, Sita J.
    Costa, Fabrizio
    Backofen, Rolf
    [J]. BIOINFORMATICS, 2016, 32 (17) : 576 - 585
  • [6] CRISPRstrand: predicting repeat orientations to determine the crRNA-encoding strand at CRISPR loci
    Alkhnbashi, Omer S.
    Costa, Fabrizio
    Shah, Shiraz A.
    Garrett, Roger A.
    Saunders, Sita J.
    Backofen, Rolf
    [J]. BIOINFORMATICS, 2014, 30 (17) : I489 - I496
  • [7] JACKS: joint analysis of CRISPR/Cas9 knockout screens
    Allen, Felicity
    Behan, Fiona
    Khodak, Anton
    Iorio, Francesco
    Yusa, Kosuke
    Garnett, Mathew
    Parts, Leopold
    [J]. GENOME RESEARCH, 2019, 29 (03) : 464 - 471
  • [8] Predicting the mutations generated by repair of Cas9-induced double-strand breaks
    Allen, Felicity
    Crepaldi, Luca
    Alsinet, Clara
    Strong, Alexander J.
    Kleshchevnikov, Vitalii
    De Angeli, Pietro
    Palenikova, Petra
    Khodak, Anton
    Kiselev, Vladimir
    Kosicki, Michael
    Bassett, Andrew R.
    Harding, Heather
    Galanty, Yaron
    Munoz-Martinez, Francisco
    Metzakopian, Emmanouil
    Jackson, Stephen P.
    Parts, Leopold
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (01) : 64 - +
  • [9] CRISPR off-target analysis in genetically engineered rats and mice
    Anderson, Keith R.
    Haeussler, Maximilian
    Watanabe, Colin
    Janakiraman, Vasantharajan
    Lund, Jessica
    Modrusan, Zora
    Stinson, Jeremy
    Bei, Qixin
    Buechler, Andrew
    Yu, Charles
    Thamminana, Sobha R.
    Tam, Lucinda
    Sowick, Michael-Anne
    Alcantar, Tuija
    O'Neil, Natasha
    Li, Jinjie
    Ta, Linda
    Lima, Lisa
    Roose-Girma, Merone
    Rairdan, Xin
    Durinck, Steffen
    Warming, Soren
    [J]. NATURE METHODS, 2018, 15 (07) : 512 - +
  • [10] [Anonymous], 2017, PEERJ