Gevrey Class Regularity of a Semigroup Associated with a Nonlinear Korteweg-de Vries Equation

被引:3
|
作者
Chu, Jixun [1 ]
Coron, Jean-Michel [2 ,3 ]
Shang, Peipei [2 ,4 ,5 ]
Tang, Shu-Xia [2 ,6 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Dept Appl Math, Beijing 100083, Peoples R China
[2] UPMC Univ Paris 06, Sorbonne Univ, Lab Jacques Louis Lions, UMR 7598, 4 Pl Jussieu, F-75252 Paris, France
[3] ETH, ITS, Clausiusstr 47, CH-8092 Zurich, Switzerland
[4] Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
[5] ETH, Inst Math Res ETH FIM, Ramistr 101, CH-8092 Zurich, Switzerland
[6] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
基金
中国国家自然科学基金;
关键词
Korteweg-de Vries equation; Resolvent estimation; Analytic semigroup; Gevrey class; STABILIZATION;
D O I
10.1007/s11401-018-1060-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors consider the Gevrey class regularity of a semigroup associated with a nonlinear Korteweg-dc Vries (KdV for short) equation. By estimating the resolvent of the corresponding linear operator, the authors conclude that the semigroup generated by the linear operator is not analytic but of Gevrey class delta is an element of(3/2, infinity) for t > 0.
引用
收藏
页码:201 / 212
页数:12
相关论文
共 50 条