Sparse Approximate Inference for Spatio-Temporal Point Process Models

被引:5
作者
Cseke, Botond [1 ]
Zammit-Mangion, Andrew [2 ]
Heskes, Tom [3 ]
Sanguinetti, Guido [1 ]
机构
[1] Univ Edinburgh, Sch Informat, 10 Crichton St, Edinburgh EH8 9AB, Midlothian, Scotland
[2] Univ Bristol, Sch Geog, Bristol, Avon, England
[3] Radboud Univ Nijmegen, Fac Sci, Nijmegen, Netherlands
基金
英国生物技术与生命科学研究理事会;
关键词
Conflict analysis; Expectation propagation; Latent Gaussian models; Log-Gaussian Cox process; Sparse approximate inference; Structure learning; Variational approximate inference; BAYESIAN-INFERENCE; NESTED-DISSECTION; PATTERNS; DIFFUSION; DISEASE; SYSTEMS; GRAPHS;
D O I
10.1080/01621459.2015.1115357
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Spatio-temporal log-Gaussian Cox process models play a central role in the analysis of spatially distributed systems in several disciplines. Yet, scalable inference remains computationally challenging both due to the high-resolution modeling generally required and the analytically intractable likelihood function. Here, we exploit the sparsity structure typical of (spatially) discretized log-Gaussian Cox process models by using approximate message-passing algorithms. The proposed algorithms scale well with the state dimension and the length of the temporal horizon with moderate loss in distributional accuracy. They hence provide a flexible and faster alternative to both nonlinear filtering-smoothing type algorithms and to approaches that implement the Laplace method or expectation propagation on (block) sparse latent Gaussian models. We infer the parameters of the latent Gaussian model using a structured variational Bayes approach. We demonstrate the proposed framework on simulation studies with both Gaussian and point-process observations and use it to reconstruct the conflict intensity and dynamics in Afghanistan from the WikiLeaks Afghan War Diary. Supplementary materials for this article are available online.
引用
收藏
页码:1746 / 1763
页数:18
相关论文
共 51 条
[1]   A space-time point process model for analyzing and predicting case patterns of diarrheal disease in northwestern Ecuador [J].
Ahn, Jaeil ;
Johnson, Timothy D. ;
Bhavnani, Darlene ;
Eisenberg, Joseph N. S. ;
Mukherjee, Bhramar .
SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2014, 9 :23-35
[2]   An approximate minimum degree ordering algorithm [J].
Amestoy, PR ;
Davis, TA ;
Duff, IS .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (04) :886-905
[3]  
Andrieu C., 2010, J ROYAL STAT SOC B, V72
[4]  
[Anonymous], 2005, DIVERGENCE MEASURES
[5]  
[Anonymous], 2002, P UNC ART INT
[6]   Geographic patterns of diffusion in the 2011 London riots [J].
Baudains, Peter ;
Johnson, Shane D. ;
Braithwaite, Alex Maves .
APPLIED GEOGRAPHY, 2013, 45 :211-219
[7]   Nested-dissection orderings for sparse LU with partial pivoting [J].
Brainman, I ;
Toledo, S .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2002, 23 (04) :998-1012
[8]   Dispersive properties of the Natural Element Method [J].
Bueche, D ;
Sukumar, N ;
Moran, B .
COMPUTATIONAL MECHANICS, 2000, 25 (2-3) :207-219
[9]  
Cseke B, 2011, J MACH LEARN RES, V12, P417
[10]  
Cuthill E., 1969, P 1969 24 NAT C ACM, P157, DOI [DOI 10.1145/800195.805928, 10.1145/800195.805928]