INVERSE NODAL PROBLEM FOR p-LAPLACIAN STRING EQUATION WITH PRUFER SUBSTITUTION

被引:0
作者
Yilmaz, Emrah [1 ]
Gulsen, Tuba [1 ]
Koyunbakan, Hikmet [1 ]
机构
[1] Firat Univ, Dept Math, TR-23119 Elazig, Turkey
来源
COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES | 2022年 / 75卷 / 09期
关键词
inverse nodal problem; Prufer substitution; p-Laplacian string equation; POTENTIAL FUNCTION; RECONSTRUCTION; EIGENVALUES; DERIVATIVES;
D O I
10.7546/CRABS.2022.09.02
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider an inverse nodal problem for p-Laplacian string equation under some boundary conditions. Asymptotic formulas for eigenvalues and nodal parameters are constructed by modified Prufer substitution. The most important process is to apply modified Prufer substitution to get an exhaustive asymptotic estimate for eigenvalues. Moreover, a reconstruction formula for density function of p-Laplacian string equation is obtained by nodal parameters. Generated outcomes are the generalization of the known string problem.
引用
收藏
页码:1262 / 1270
页数:9
相关论文
共 19 条
[1]  
Binding P, 2003, STUD SCI MATH HUNG, V40, P375
[2]   Eigenvalues of the radially symmetric p-Laplacian in Rn [J].
Brown, BM ;
Reichel, W .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 69 :657-675
[3]  
CHEN H. Y., 2009, THESIS NATL SUN YS U
[4]  
Dabbaghian AH, 2018, COMPUT METHODS DIFFE, V6, P19
[5]   ON THE HALF-LINEAR 2ND-ORDER DIFFERENTIAL-EQUATIONS [J].
ELBERT, A .
ACTA MATHEMATICA HUNGARICA, 1987, 49 (3-4) :487-508
[6]   Inverse nodal problem for p-laplacian dirac system [J].
Gulsen, Tuba ;
Yilmaz, Emrah ;
Koyunbakan, Hikmet .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (07) :2329-2335
[7]   SOLUTIONS OF INVERSE NODAL PROBLEMS [J].
HALD, OH ;
MCLAUGHLIN, JR .
INVERSE PROBLEMS, 1989, 5 (03) :307-347
[8]   Reconstruction of the potential function and its derivatives for the diffusion operator [J].
Koyunbakan, Hikmet ;
Yilmaz, Emrah .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2008, 63 (3-4) :127-130
[9]   The inverse nodal problem and the Ambarzumyan problem for the p-Laplacian [J].
Law, C. K. ;
Lian, Wei-Cheng ;
Wang, Wei-Chuan .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 :1261-1273
[10]   Reconstructing the potential function and its derivatives using nodal data [J].
Law, CK ;
Yang, CF .
INVERSE PROBLEMS, 1998, 14 (02) :299-312