Permutation entropy: One concept, two approaches

被引:27
作者
Amigo, J. M. [1 ]
Keller, K. [2 ]
机构
[1] Univ Miguel Hernandez, Ctr Invest Operat, Elche 03202, Spain
[2] Med Univ Lubeck, Inst Math, D-23562 Lubeck, Germany
关键词
KOLMOGOROV-SINAI ENTROPY; TIME-SERIES; FORBIDDEN PATTERNS; ORDINAL PATTERNS; COMPLEXITY; ELECTROENCEPHALOGRAM; INDEPENDENCE; EEG; DETERMINISM; PERFORMANCE;
D O I
10.1140/epjst/e2013-01840-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Since C. Bandt and B. Pompe introduced permutation entropy in 2002 for piecewise strictly monotonous self-maps of one-dimensional intervals, this concept has been generalized to ever more general settings by means of two similar, though not equivalent, approaches. The first one keeps the original spirit in that it uses "sharp" dynamics and the corresponding ordinal partitions. The second uses symbolic (or "coarse-grained" dynamics with respect to arbitrary finite partitions, as in the conventional approach to the Kolmogorov-Sinai entropy of dynamical systems. Precisely, one of the main questions along these two avenues refers to the relation between permutation entropy and Kolmogorov-Sinai entropy. In this paper the authors will explain the underpinnings of both approaches and the latest theoretical results on permutation entropy. The authors also discuss some remaining open questions.
引用
收藏
页码:263 / 273
页数:11
相关论文
共 50 条
[41]   On the Statistical Properties of Multiscale Permutation Entropy: Characterization of the Estimator's Variance [J].
Davalos, Antonio ;
Jabloun, Meryem ;
Ravier, Philippe ;
Buttelli, Olivier .
ENTROPY, 2019, 21 (05)
[42]   Quantum one-way permutation over the finite field of two elements [J].
de Castro, Alexandre .
QUANTUM INFORMATION PROCESSING, 2017, 16 (06)
[43]   Permutation and weighted-permutation entropy analysis for the complexity of nonlinear time series [J].
Xia, Jianan ;
Shang, Pengjian ;
Wang, Jing ;
Shi, Wenbin .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 31 (1-3) :60-68
[44]   Recent Progress in Symbolic Dynamics and Permutation Complexity Ten Years of Permutation Entropy [J].
Amigo, Jose M. ;
Keller, Karsten ;
Kurths, Juergen .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (02) :241-247
[45]   The equality of Kolmogorov-Sinai entropy and metric permutation entropy generalized [J].
Amigo, Jose M. .
PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (07) :789-793
[46]   Nonlinear dynamical analysis of sleep electroencephalography using fractal and entropy approaches [J].
Ma, Yan ;
Shi, Wenbin ;
Peng, Chung-Kang ;
Yang, Albert C. .
SLEEP MEDICINE REVIEWS, 2018, 37 :85-93
[47]   Epileptic Seizure Prediction Based on Permutation Entropy [J].
Yang, Yanli ;
Zhou, Mengni ;
Niu, Yan ;
Li, Conggai ;
Cao, Rui ;
Wang, Bin ;
Yan, Pengfei ;
Ma, Yao ;
Xiang, Jie .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2018, 12
[48]   A Note on the Sensitivity of Permutation Entropy to Additive Noise [J].
Jablonskaite, Kamilija ;
Haslhofer, Eva-Maria ;
Landauskas, Mantas .
FLUCTUATION AND NOISE LETTERS, 2025, 24 (03)
[49]   Permutation entropy analysis of complex magnetospheric dynamics [J].
Consolini, Giuseppe ;
De Michelis, Paola .
JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2014, 115 :25-31
[50]   Facial expression awareness based on multi-scale permutation entropy of EEG [J].
Liu, Xiaofeng ;
Hu, Bin ;
Zheng, Xiangwei ;
Li, Xiaowei .
INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2018, 21 (04) :287-300