Permutation entropy: One concept, two approaches

被引:26
|
作者
Amigo, J. M. [1 ]
Keller, K. [2 ]
机构
[1] Univ Miguel Hernandez, Ctr Invest Operat, Elche 03202, Spain
[2] Med Univ Lubeck, Inst Math, D-23562 Lubeck, Germany
来源
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS | 2013年 / 222卷 / 02期
关键词
KOLMOGOROV-SINAI ENTROPY; TIME-SERIES; FORBIDDEN PATTERNS; ORDINAL PATTERNS; COMPLEXITY; ELECTROENCEPHALOGRAM; INDEPENDENCE; EEG; DETERMINISM; PERFORMANCE;
D O I
10.1140/epjst/e2013-01840-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Since C. Bandt and B. Pompe introduced permutation entropy in 2002 for piecewise strictly monotonous self-maps of one-dimensional intervals, this concept has been generalized to ever more general settings by means of two similar, though not equivalent, approaches. The first one keeps the original spirit in that it uses "sharp" dynamics and the corresponding ordinal partitions. The second uses symbolic (or "coarse-grained" dynamics with respect to arbitrary finite partitions, as in the conventional approach to the Kolmogorov-Sinai entropy of dynamical systems. Precisely, one of the main questions along these two avenues refers to the relation between permutation entropy and Kolmogorov-Sinai entropy. In this paper the authors will explain the underpinnings of both approaches and the latest theoretical results on permutation entropy. The authors also discuss some remaining open questions.
引用
收藏
页码:263 / 273
页数:11
相关论文
共 50 条
  • [1] Permutation entropy: One concept, two approaches
    J.M. Amigó
    K. Keller
    The European Physical Journal Special Topics, 2013, 222 : 263 - 273
  • [2] Texture analysis using two-dimensional permutation entropy and amplitude-aware permutation entropy
    Gaudencio, Andreia S.
    Hilal, Mirvana
    Cardoso, Joao M.
    Humeau-Heurtier, Anne
    Vaz, Pedro G.
    PATTERN RECOGNITION LETTERS, 2022, 159 : 150 - 156
  • [3] Multiscale permutation entropy for two-dimensional patterns
    Morel, Cristina
    Humeau-Heurtier, Anne
    PATTERN RECOGNITION LETTERS, 2021, 150 : 139 - 146
  • [4] Melding Two Approaches to Entropy
    Leff, Harvey S.
    Lambert, Frank L.
    JOURNAL OF CHEMICAL EDUCATION, 2010, 87 (02) : 143 - 143
  • [5] Comparing different approaches to compute Permutation Entropy with coarse time series
    Traversaro, Francisco
    Ciarrocchi, Nicolas
    Pollo Cattaneo, Florencia
    Redelico, Francisco
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 513 : 635 - 643
  • [6] Weighted permutation entropy based on different symbolic approaches for financial time series
    Yin, Yi
    Shang, Pengjian
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 443 : 137 - 148
  • [7] On the relation of KS entropy and permutation entropy
    Keller, Karsten
    Unakafov, Anton M.
    Unakafova, Valentina A.
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (18) : 1477 - 1481
  • [8] Topological permutation entropy
    Amigo, Jose M.
    Kennel, Matthew B.
    PHYSICA D-NONLINEAR PHENOMENA, 2007, 231 (02) : 137 - 142
  • [9] Permutation entropy revisited
    Watt, Stuart J.
    Politi, Antonio
    CHAOS SOLITONS & FRACTALS, 2019, 120 : 95 - 99
  • [10] On Renyi Permutation Entropy
    Gutjahr, Tim
    Keller, Karsten
    ENTROPY, 2022, 24 (01)