Cayley transform and the Kronecker product of Hermitian matrices

被引:1
作者
Hardy, Yorick [1 ]
Fosner, Ajda [2 ]
Steeb, Willi-Hans [3 ]
机构
[1] Univ S Africa, Dept Math Sci, ZA-0001 Pretoria, South Africa
[2] Univ Primorska, Fac Management, SI-6104 Koper, Slovenia
[3] Univ Johannesburg, Int Sch Sci Comp, ZA-2006 Auckland Pk, South Africa
基金
新加坡国家研究基金会;
关键词
Cayley transform; Hermitian matrix; Kronecker product;
D O I
10.1016/j.laa.2013.09.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the conditions under which the Cayley transform of the Kronecker product of two Hermitian matrices can be again presented as a Kronecker product of two matrices and, if so, if it is a product of the Cayley transforms of the two Hermitian matrices. We also study the related question: given two matrices, which matrix under the Cayley transform yields the Kronecker product of their Cayley transforms. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:4023 / 4031
页数:9
相关论文
共 50 条
[41]   Rearrangement inequalities for Hermitian matrices [J].
Tie, Lin ;
Cai, Kai-Yuan ;
Lin, Yan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (02) :443-456
[42]   Additive maps on hermitian matrices [J].
Orel, M. ;
Kuzma, B. .
LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (06) :599-617
[43]   Products of orthoprojectors and Hermitian matrices [J].
Ikramov K.D. .
Journal of Mathematical Sciences, 2012, 182 (6) :782-784
[44]   The Cayley transform of prevalent matrix classes [J].
Mondal, Samir ;
Sivakumar, K. C. ;
Tsatsomeros, Michael .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 681 :1-20
[45]   The Cayley transform and uniformly bounded representations [J].
Astengo, F ;
Cowling, M ;
Di Blasio, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 213 (02) :241-269
[46]   KoPA: Automated Kronecker Product Approximation [J].
Cai, Chencheng ;
Chen, Rong ;
Xiao, Han .
JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
[47]   Dimension of Marginals of Kronecker Product Models [J].
Montufar, Guido ;
Morton, Jason .
SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2017, 1 (01) :126-151
[48]   Some remarks on the Kronecker product of graphs [J].
Bottreau, A ;
Metivier, Y .
INFORMATION PROCESSING LETTERS, 1998, 68 (02) :55-61
[49]   Hybrid Kronecker Product Decomposition and Approximation [J].
Cai, Chencheng ;
Chen, Rong ;
Xiao, Han .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (03) :838-852
[50]   Dissipative operator and its Cayley transform [J].
Ugurlu, Ekin ;
Tas, Kenan .
TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (06) :1404-1432