Cayley transform and the Kronecker product of Hermitian matrices

被引:1
作者
Hardy, Yorick [1 ]
Fosner, Ajda [2 ]
Steeb, Willi-Hans [3 ]
机构
[1] Univ S Africa, Dept Math Sci, ZA-0001 Pretoria, South Africa
[2] Univ Primorska, Fac Management, SI-6104 Koper, Slovenia
[3] Univ Johannesburg, Int Sch Sci Comp, ZA-2006 Auckland Pk, South Africa
基金
新加坡国家研究基金会;
关键词
Cayley transform; Hermitian matrix; Kronecker product;
D O I
10.1016/j.laa.2013.09.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the conditions under which the Cayley transform of the Kronecker product of two Hermitian matrices can be again presented as a Kronecker product of two matrices and, if so, if it is a product of the Cayley transforms of the two Hermitian matrices. We also study the related question: given two matrices, which matrix under the Cayley transform yields the Kronecker product of their Cayley transforms. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:4023 / 4031
页数:9
相关论文
共 50 条
[31]   Matched and Mismatched Estimation of Kronecker Product of Linearly Structured Scatter Matrices Under Elliptical Distributions [J].
Meriaux, Bruno ;
Ren, Chengfang ;
Breloy, Arnaud ;
El Korso, Mohammed Nabil ;
Forster, Philippe .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 :603-616
[32]   Efficient Estimation of Kronecker Product of Linear Structured Scatter Matrices under t-distribution [J].
Meriaux, Bruno ;
Ren, Chengfang ;
Breloy, Arnaud ;
El Korso, Mohammed Nabil ;
Forster, Philippe .
28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, :2418-2422
[33]   Kronecker Products of Positive Semidefinite Matrices [J].
李炯生 .
数学研究与评论, 1997, (03) :10-17
[34]   Magic coverings and the Kronecker product [J].
Lopez, S. C. ;
Muntaner-Batle, F. A. ;
Rius-Font, M. .
UTILITAS MATHEMATICA, 2014, 95 :73-84
[35]   Cayley transform on Stiefel manifolds [J].
Macias-Virgos, Enrique ;
Jose Pereira-Saez, Maria ;
Tanre, Daniel .
JOURNAL OF GEOMETRY AND PHYSICS, 2018, 123 :53-60
[36]   Toughness of Kronecker product of graphs [J].
Guji, Raxida ;
Ali, Tursun .
ARS COMBINATORIA, 2016, 127 :149-156
[37]   The principle of extrapolation and the Cayley Transform [J].
Hadjidimos, A. ;
Tzoumas, M. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (10) :2465-2480
[38]   Quaternionic Cayley transform revisited [J].
Vasilescu, F. -H. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (02) :790-807
[39]   Differential Kronecker Product Beamforming [J].
Cohen, Israel ;
Benesty, Jacob ;
Chen, Jingdong .
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2019, 27 (05) :892-902
[40]   Comparison of the quasi-inverses of the Kronecker sum and product of matrices over complete commutative dioids with applications [J].
Hashemi, Behnam ;
Tavakolipour, Hanieh ;
Shirazi, Mahsa Nasrollahi .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 448 :22-36