Impact of the pulling rate on the redox state and magnetic domains of Fe-Si-O glass ceramic processed by LFZ method

被引:7
作者
Salehizadeh, S. A. [1 ,2 ]
Ferreira, N. M. [2 ]
Ivanov, M. S. [3 ]
Khomchenko, V. A. [3 ]
Paixao, J. A. [3 ]
Costa, F. M. [2 ]
Valente, M. A. [2 ]
Graca, M. P. F. [2 ]
机构
[1] Univ Coimbra, Mech Engn Dept, SEG CEMMPRE, P-3030788 Coimbra, Portugal
[2] Univ Aveiro, Dept Phys i3N, P-3810193 Aveiro, Portugal
[3] Univ Coimbra, Dept Phys, CFisUC, P-3004516 Coimbra, Portugal
关键词
Laser floating zone (LFZ); Iron oxide doped silica glass; Redox state; Atomic/magnetic force microscopy (AFM/MFM); Magnetic properties; SILICATE-GLASSES; SINGLE-CRYSTALS; IRON-OXIDE; RAMAN; BEHAVIOR; NANOPARTICLES; SPECTROSCOPY; GROWTH; CRYSTALLIZATION; REDUCTION;
D O I
10.1016/j.materresbull.2020.110972
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work studies the effect of the pulling rate, varying from 100 to 400 mm/h, on the redox state, structure and magnetic properties of iron oxide bearing silica glasses processed by laser floating zone (LFZ) method. XRD analysis revealed that the maximum crystallinity is obtained in the fibre grown at the lowest pulling rate. A detailed Raman analysis demonstrated that the global content of Fe2+ increases with pulling rate, while the growth under a lower pulling rate promotes the alpha-Fe2O3 crystallization. Atomic/magnetic force microscopy provided further evidence of phase-separated iron oxide crystallites formation with a high Fe2+/F-total ratio as the pulling rate increases. The magnetic measurements performed over a wide temperature range showed that the highest magnetization is found in the fibre grown at the highest pulling rate. A strong correlation between structural-topographical features and the magnetic characteristics of the glass fibres is substantiated.
引用
收藏
页数:10
相关论文
共 61 条
[1]   Electronic conductivity in the SiO2-PbO-Fe2O3 glass containing magnetic nanostructures [J].
Barczynski, R. J. ;
Szreder, N. A. ;
Karczewski, J. ;
Gazda, M. .
SOLID STATE IONICS, 2014, 262 :801-805
[2]   The magnetic properties of natural and synthetic (Fex, Mg1-x)2 SiO4 olivines [J].
Belley, France ;
Ferre, Eric C. ;
Martin-Hernandez, Fatima ;
Jackson, Michael J. ;
Dyar, M. Darby ;
Catlos, Elizabeth J. .
EARTH AND PLANETARY SCIENCE LETTERS, 2009, 284 (3-4) :516-526
[3]   Redox and clustering of iron in silicate glasses [J].
Bingham, PA ;
Parker, JM ;
Searle, T ;
Williams, JM ;
Fyles, K .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1999, 253 :203-209
[4]   The influence of crystallised Fe3O4 on the magnetic properties of coprecipitation-derived ferrimagnetic glass-ceramics [J].
Bretcanu, O ;
Spriano, S ;
Verné, E ;
Cöisson, M ;
Tiberto, P ;
Allia, P .
ACTA BIOMATERIALIA, 2005, 1 (04) :421-429
[5]   Review: the structure of simple phosphate glasses [J].
Brow, RK .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2000, 263 (1-4) :1-28
[6]   Infrared- and Raman-active phonons of magnetite, maghemite, and hematite: A computer simulation and spectroscopic study [J].
Chamritski, I ;
Burns, G .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (11) :4965-4968
[7]   Growth and magneto-optical characteristics of cerium-doped terbium gallium garnet by the floating zone method [J].
Chen, Zhe ;
Yang, Lei ;
Hang, Yin ;
Wang, Xiangyong .
CRYSTAL RESEARCH AND TECHNOLOGY, 2015, 50 (07) :528-531
[8]   Mechanism of Metastable Wustite Formation in the Reduction Process of Iron Oxide below 570°C [J].
Chen, Zhiyuan ;
Chou, Kuo-Chih ;
Morita, Kazuki .
MATERIALS TRANSACTIONS, 2016, 57 (09) :1660-1663
[9]  
CHOPELAS A, 1991, AM MINERAL, V76, P1101
[10]  
Coey J M. D., 2010, Magnetism and Magnetic Materials, P464