A new type of plasma wakefield accelerator driven by magnetowaves

被引:15
|
作者
Chen, Pisin [1 ,2 ,3 ,4 ]
Chang, Feng-Yin [4 ,5 ]
Lin, Guey-Lin [4 ,5 ]
Noble, Robert J.
Sydora, Richard [6 ]
机构
[1] Stanford Univ, Stanford Linear Accelerator Ctr, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA
[2] Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan
[3] Natl Taiwan Univ, Grad Inst Astrophys, Taipei 106, Taiwan
[4] Natl Taiwan Univ, Leung Ctr Cosmol & Particle Astrophys, Taipei 106, Taiwan
[5] Natl Chiao Tung Univ, Inst Phys, Hsinchu 300, Taiwan
[6] Univ Alberta, Dept Phys, Edmonton, AB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
GENERATION; SIMULATION; WAVES;
D O I
10.1088/0741-3335/51/2/024012
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a new concept for a plasma wakefield accelerator driven by magnetowaves (MPWA). This concept was originally proposed as a viable mechanism for the 'cosmic accelerator' that would accelerate cosmic particles to ultra-high energies in the astrophysical setting. Unlike the more familiar plasma wakefield accelerator (PWFA) and the laser wakefield accelerator (LWFA) where the drivers, the charged-particle beam and the laser, are independently existing entities, MPWA invokes the high-frequency and highspeed whistler mode as the driver, which is a medium wave that cannot exist outside of the plasma. Aside from the difference in drivers, the underlying mechanism that excites the plasma wakefield via the ponderomotive potential is common. Our computer simulations show that under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over many plasma wavelengths. We suggest that in addition to its celestial application, the MPWA concept can also be of terrestrial utility. A proof-of-principle experiment on MPWA would benefit both terrestrial and celestial accelerator concepts.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Observation of Betatron X-Ray Radiation in a Self-Modulated Laser Wakefield Accelerator Driven with Picosecond Laser Pulses
    Albert, F.
    Lemos, N.
    Shaw, J. L.
    Pollock, B. B.
    Goyon, C.
    Schumaker, W.
    Saunders, A. M.
    Marsh, K. A.
    Pak, A.
    Ralph, J. E.
    Martins, J. L.
    Amorim, L. D.
    Falcone, R. W.
    Glenzer, S. H.
    Moody, J. D.
    Joshi, C.
    PHYSICAL REVIEW LETTERS, 2017, 118 (13)
  • [22] A method of determining narrow energy spread electron beams from a laser plasma wakefield accelerator using undulator radiation
    Gallacher, J. G.
    Anania, M. P.
    Brunetti, E.
    Budde, F.
    Debus, A.
    Ersfeld, B.
    Haupt, K.
    Islam, M. R.
    Jaeckel, O.
    Pfotenhauer, S.
    Reitsma, A. J. W.
    Rohwer, E.
    Schlenvoigt, H. -P.
    Schwoerer, H.
    Shanks, R. P.
    Wiggins, S. M.
    Jaroszynski, D. A.
    PHYSICS OF PLASMAS, 2009, 16 (09)
  • [23] Multiple Pulse Resonantly Enhanced Laser Plasma Wakefield Acceleration
    Corner, L.
    Walczak, R.
    Nevay, L. J.
    Dann, S.
    Hooker, S. M.
    Bourgeois, N.
    Cowley, J.
    ADVANCED ACCELERATOR CONCEPTS, 2012, 1507 : 872 - +
  • [24] Seeded free-electron laser driven by a compact laser plasma accelerator
    Labat, Marie
    Cabada, Jurjen Couperus
    Ghaith, Amin
    Irman, Arie
    Berlioux, Anthony
    Berteaud, Philippe
    Blache, Frederic
    Bock, Stefan
    Bouvet, Francois
    Briquez, Fabien
    Chang, Yen-Yu
    Corde, Sebastien
    Debus, Alexander
    De Oliveira, Carlos
    Duval, Jean-Pierre
    Dietrich, Yannick
    El Ajjouri, Moussa
    Eisenmann, Christoph
    Gautier, Julien
    Gebhardt, Rene
    Grams, Simon
    Helbig, Uwe
    Herbeaux, Christian
    Hubert, Nicolas
    Kitegi, Charles
    Kononenko, Olena
    Kuntzsch, Michael
    LaBerge, Maxwell
    Le, Stephane
    Leluan, Bruno
    Loulergue, Alexandre
    Malka, Victor
    Marteau, Fabrice
    Guyen, Manh Huy N.
    Oumbarek-Espinos, Driss
    Pausch, Richard
    Pereira, Damien
    Puschel, Thomas
    Ricaud, Jean-Paul
    Rommeluere, Patrick
    Roussel, Eleonore
    Rousseau, Pascal
    Schobel, Susanne
    Sebdaoui, Mourad
    Steiniger, Klaus
    Tavakoli, Keihan
    Thaury, Cedric
    Ufer, Patrick
    Valleau, Mathieu
    Vandenberghe, Marc
    NATURE PHOTONICS, 2023, 17 (02) : 150 - +
  • [25] Terahertz-driven wakefield electron acceleration
    Sharma, A.
    Tibai, Z.
    Hebling, J.
    Fulop, J. A.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2018, 51 (20)
  • [26] Control of electron-seeding phase in a cascaded laser wakefield accelerator
    Deng, A. H.
    Liu, J. S.
    Nakajima, K.
    Xia, C. Q.
    Wang, W. T.
    Li, W. T.
    Lu, H. Y.
    Zhang, H.
    Ju, J. J.
    Tian, Y.
    Wang, Ch.
    Li, R. X.
    Xu, Z. Z.
    PHYSICS OF PLASMAS, 2012, 19 (02)
  • [27] Laser wakefield accelerator based light sources: potential applications and requirements
    Albert, F.
    Thomas, A. G. R.
    Mangles, S. P. D.
    Banerjee, S.
    Corde, S.
    Flacco, A.
    Litos, M.
    Neely, D.
    Vieira, J.
    Najmudin, Z.
    Bingham, R.
    Joshi, C.
    Katsouleas, T.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2014, 56 (08)
  • [28] Direct spectral measurements of midinfrared radiation from a laser wakefield accelerator
    Hussein, A. E.
    Ludwig, J. D.
    Ma, Y.
    Masson-Laborde, P. -E.
    Skrodzki, P. J.
    Hinojosa, J.
    Peterson, E.
    Jovanovic, I.
    Maksimchuk, A.
    Nees, J.
    Thomas, A. G. R.
    Rozmus, W.
    Krushelnick, K.
    PHYSICAL REVIEW A, 2022, 106 (06)
  • [29] Three-dimensional structure of the laser wakefield accelerator in the blowout regime
    Vieira, J. F.
    Martins, S. F.
    Fiuza, F.
    Fonseca, R. A.
    Silva, L. O.
    Huang, C.
    Lu, W.
    Tzoufras, M.
    Tsung, F.
    Mori, W. B.
    Cooley, J.
    Antonsen, T., Jr.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2008, 36 (04) : 1124 - 1125
  • [30] Formation of Ultrarelativistic Electron Rings from a Laser-Wakefield Accelerator
    Pollock, B. B.
    Tsung, F. S.
    Albert, F.
    Shaw, J. L.
    Clayton, C. E.
    Davidson, A.
    Lemos, N.
    Marsh, K. A.
    Pak, A.
    Ralph, J. E.
    Mori, W. B.
    Joshi, C.
    PHYSICAL REVIEW LETTERS, 2015, 115 (05)