Scaling of liquid-drop impact craters in wet granular media

被引:18
作者
Zhang, Qianyun [1 ]
Gao, Ming [1 ]
Zhao, Runchen [1 ]
Cheng, Xiang [1 ]
机构
[1] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 04期
基金
美国国家科学基金会;
关键词
SAND;
D O I
10.1103/PhysRevE.92.042205
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Combining high-speed photography with laser profilometry, we study the dynamics and the morphology of liquid-drop impact cratering in wet granular media-a ubiquitous phenomenon relevant to many important geological, agricultural, and industrial processes. By systematically investigating important variables such as impact energy, the size of impinging drops, and the degree of liquid saturation in granular beds, we uncover a scaling law for the size of impact craters. We show that this scaling can be explained by considering the balance between the inertia of impinging drops and the strength of impacted surface. Such a theoretical understanding confirms that the unique energy partition originally proposed for liquid-drop impact cratering in dry granular media also applies for impact cratering in wet granular media. Moreover, we demonstrate that compressive stresses, instead of shear stresses, control the process of granular impact cratering. Our study enriches the picture of generic granular impact cratering and sheds light on the familiar phenomena of raindrop impacts in granular media.
引用
收藏
页数:8
相关论文
共 39 条
[21]  
METZ R, 1981, J SEDIMENT PETROL, V51, P265
[22]   Wet granular materials [J].
Mitarai, N ;
Nori, F .
ADVANCES IN PHYSICS, 2006, 55 (1-2) :1-45
[23]   Impact of a liquid drop on a granular medium: Inertia, viscosity and surface tension effects on the drop deformation [J].
Nefzaoui, E. ;
Skurtys, O. .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2012, 41 :43-50
[24]   Granular Dynamics During Impact [J].
Nordstrom, K. N. ;
Lim, E. ;
Harrington, M. ;
Losert, W. .
PHYSICAL REVIEW LETTERS, 2014, 112 (22)
[25]   Maximum angle of stability of a wet granular pile [J].
Nowak, S ;
Samadani, A ;
Kudrolli, A .
NATURE PHYSICS, 2005, 1 (01) :50-52
[26]   ENVIRONMENTAL AND ECONOMIC COSTS OF SOIL EROSION AND CONSERVATION BENEFITS [J].
PIMENTEL, D ;
HARVEY, C ;
RESOSUDARMO, P ;
SINCLAIR, K ;
KURZ, D ;
MCNAIR, M ;
CRIST, S ;
SHPRITZ, L ;
FITTON, L ;
SAFFOURI, R ;
BLAIR, R .
SCIENCE, 1995, 267 (5201) :1117-1123
[27]   Formation of granular jets observed by high-speed X-ray radiography [J].
Royer, JR ;
Corwin, EI ;
Flior, A ;
Cordero, ML ;
Rivers, ML ;
Eng, PJ ;
Jaeger, HM .
NATURE PHYSICS, 2005, 1 (03) :164-167
[28]   Penetration of projectiles into granular targets [J].
Ruiz-Suarez, J. C. .
REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (06)
[29]   Morphological clues to wet granular pile stability [J].
Scheel, M. ;
Seemann, R. ;
Brinkmann, M. ;
Di Michiel, M. ;
Sheppard, A. ;
Breidenbach, B. ;
Herminghaus, S. .
NATURE MATERIALS, 2008, 7 (03) :189-193
[30]   Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints [J].
Som, Sanjoy M. ;
Catling, David C. ;
Harnmeijer, Jelte P. ;
Polivka, Peter M. ;
Buick, Roger .
NATURE, 2012, 484 (7394) :359-362