Semantic pixel labelling in remote sensing images using a deep convolutional encoder-decoder model

被引:17
作者
Wei, Xin [1 ,2 ]
Fu, Kun [1 ]
Gao, Xin [1 ]
Yan, Menglong [1 ]
Sun, Xian [1 ]
Chen, Kaiqiang [1 ,2 ]
Sun, Hao [1 ]
机构
[1] Chinese Acad Sci, Inst Elect, Key Lab Technol Geospatial Informat Proc & Applic, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Dept Elect Elect & Commun Engn, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1080/2150704X.2017.1410291
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this letter, we propose a deep convolutional encoder-decoder model for remote sensing images semantic pixel labelling. Specifically, the encoder network is employed to extract the high-level semantic feature of hyperspectral images and the decoder network is employed to map the low resolution feature maps to full input resolution feature maps for pixel-wise labelling. Different from traditional convolutional layers we use a 'dilated convolution' which effectively enlarge the receptive field of filters in order to incorporate more context information. Also the fully connected conditional random field (CRF) is integrated into the model so that the network can be trained end-to-end. CRF can effectively improve the localization performance. Experiments on the Vaihingen and Potsdam dataset demonstrate that our model can make promising performance.
引用
收藏
页码:199 / 208
页数:10
相关论文
共 12 条
[1]  
[Anonymous], 2015, ARXIV151100561
[2]  
[Anonymous], 2016, ARXIV160600915
[3]  
[Anonymous], 2011, ADV NEURAL INF PROCE
[4]  
Holschneider M., 1988, WAVELETS TIME FREQUE, V1, P286
[5]   Hourglass-ShapeNetwork Based Semantic Segmentation for High Resolution Aerial Imagery [J].
Liu, Yu ;
Duc Minh Nguyen ;
Deligiannis, Nikos ;
Ding, Wenrui ;
Munteanu, Adrian .
REMOTE SENSING, 2017, 9 (06)
[6]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
[7]   Learning Deconvolution Network for Semantic Segmentation [J].
Noh, Hyeonwoo ;
Hong, Seunghoon ;
Han, Bohyung .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1520-1528
[8]  
Paisitkriangkrai Sakrapee, 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), P36, DOI 10.1109/CVPRW.2015.7301381
[9]   MARKOV RANDOM-FIELD MODELS FOR UNSUPERVISED SEGMENTATION OF TEXTURED COLOR IMAGES [J].
PANJWANI, DK ;
HEALEY, G .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1995, 17 (10) :939-954
[10]  
Simonyan K, 2015, Arxiv, DOI arXiv:1409.1556