SINGULAR TRAJECTORIES AND THE CONTRAST IMAGING PROBLEM IN NUCLEAR MAGNETIC RESONANCE

被引:10
作者
Bonnard, Bernard [1 ]
Chyba, Monique [2 ]
Marriott, John [2 ]
机构
[1] UMR CNRS 5584, Inst Math Bourgogne, F-21078 Dijon, France
[2] Univ Hawaii, Dept Math, Honolulu, HI 96822 USA
基金
美国国家科学基金会;
关键词
Mayer problem; geometric optimal control; contrast imaging; GEOMETRIC OPTIMAL-CONTROL; SYSTEMS; OPTIMALITY;
D O I
10.1137/110833427
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, the contrast imaging problem in nuclear magnetic resonance is modeled as a Mayer problem in optimal control whose solutions can be parameterized using Pontryagin's maximum principle and analyzed using geometric optimal control. In particular, the optimal problem can be mainly reduced to the analysis of the Hamiltonian dynamics describing the singular trajectories and encoding their optimality status.
引用
收藏
页码:1325 / 1349
页数:25
相关论文
共 42 条
[11]   The energy minimization problem for two-level dissipative quantum systems [J].
Bonnard, B. ;
Cots, O. ;
Shcherbakova, N. ;
Sugny, D. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (09)
[12]   FEEDBACK EQUIVALENCE FOR NONLINEAR-SYSTEMS AND THE TIME OPTIMAL-CONTROL PROBLEM [J].
BONNARD, B .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (06) :1300-1321
[13]   THEORY OF SINGULARITIES OF INPUT-OUTPUT APPLICATION AND OPTIMALITY OF SINGULAR TRAJECTORIES IN THE OPTIMAL-TIME PROBLEM [J].
BONNARD, B ;
KUPKA, I .
FORUM MATHEMATICUM, 1993, 5 (02) :111-159
[14]   QUADRATIC CONTROL-SYSTEMS [J].
BONNARD, B .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1991, 4 (02) :139-160
[15]  
Bonnard B., 2003, MATH APPLIC, V40
[16]  
Bonnard B, 2007, ESAIM CONTR OPTIM CA, V13, P207, DOI [10.1051/cocv:2007012, 10.1051/cocv.2007012]
[17]   Geometric Optimal Control of the Contrast Imaging Problem in Nuclear Magnetic Resonance [J].
Bonnard, Bernard ;
Cots, Olivier ;
Glaser, Steffen J. ;
Lapert, Marc ;
Sugny, Dominique ;
Zhang, Yun .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (08) :1957-1969
[18]   Time-Minimal Control of Dissipative Two-Level Quantum Systems: The Generic Case [J].
Bonnard, Bernard ;
Chyba, Monique ;
Sugny, Dominique .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (11) :2598-2610
[19]   TIME-MINIMAL CONTROL OF DISSIPATIVE TWO-LEVEL QUANTUM SYSTEMS: THE INTEGRABLE CASE [J].
Bonnard, Bernard ;
Sugny, Dominique .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2009, 48 (03) :1289-1308
[20]   Differential continuation for regular optimal control problems [J].
Caillau, J. -B. ;
Cots, O. ;
Gergaud, J. .
OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (02) :177-196