SINGULAR TRAJECTORIES AND THE CONTRAST IMAGING PROBLEM IN NUCLEAR MAGNETIC RESONANCE

被引:10
作者
Bonnard, Bernard [1 ]
Chyba, Monique [2 ]
Marriott, John [2 ]
机构
[1] UMR CNRS 5584, Inst Math Bourgogne, F-21078 Dijon, France
[2] Univ Hawaii, Dept Math, Honolulu, HI 96822 USA
基金
美国国家科学基金会;
关键词
Mayer problem; geometric optimal control; contrast imaging; GEOMETRIC OPTIMAL-CONTROL; SYSTEMS; OPTIMALITY;
D O I
10.1137/110833427
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, the contrast imaging problem in nuclear magnetic resonance is modeled as a Mayer problem in optimal control whose solutions can be parameterized using Pontryagin's maximum principle and analyzed using geometric optimal control. In particular, the optimal problem can be mainly reduced to the analysis of the Hamiltonian dynamics describing the singular trajectories and encoding their optimality status.
引用
收藏
页码:1325 / 1349
页数:25
相关论文
共 42 条
[1]   Feedback-invariant optimal control theory and differential geometry - I. Regular extremals [J].
Agrachev A.A. ;
Gamkrelidze R.V. .
Journal of Dynamical and Control Systems, 1997, 3 (3) :343-389
[2]  
Agrachev A. A., 2004, Control Theory and Optimization, V87
[3]  
[Anonymous], 1962, PURE APPL MATH
[4]  
[Anonymous], 2012, THESIS U BOURGOGNE D
[5]  
[Anonymous], MATH MODELS IN PRESS
[6]  
[Anonymous], BOCOP OPTIMAL CONTRO
[7]  
[Anonymous], LECT NOTES CONTROL I
[8]   Controllability Issues for Continuous-Spectrum Systems and Ensemble Controllability of Bloch Equations [J].
Beauchard, Karine ;
Coron, Jean-Michel ;
Rouchon, Pierre .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 296 (02) :525-557
[9]  
Bonnard B, 2005, DISCRETE CONT DYN-B, V5, P929
[10]   TRANSITIVITY OF FAMILIES OF INVARIANT VECTOR-FIELDS ON THE SEMIDIRECT PRODUCTS OF LIE-GROUPS [J].
BONNARD, B ;
JURDJEVIC, V ;
KUPKA, I ;
SALLET, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 271 (02) :525-535