Optimal fits of diffusion constants from single-time data points of Brownian trajectories

被引:14
|
作者
Boyer, Denis [1 ]
Dean, David S. [2 ,3 ]
Mejia-Monasterio, Carlos [4 ,5 ]
Oshanin, Gleb [6 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 04510, DF, Mexico
[2] Univ Bordeaux, F-33400 Talence, France
[3] CNRS, LOMA, UMR 5798, F-33400 Talence, France
[4] Tech Univ Madrid, Lab Phys Properties, Madrid 28040, Spain
[5] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
[6] Univ Paris 06, CNRS, Lab Phys Theorique Matiere Condensee, UMR 7600, F-75252 Paris 5, France
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 06期
基金
芬兰科学院; 欧洲研究理事会;
关键词
PARTICLE TRACKING; MEMBRANE;
D O I
10.1103/PhysRevE.86.060101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Experimental methods based on single particle tracking (SPT) are being increasingly employed in the physical and biological sciences, where nanoscale objects are visualized with high temporal and spatial resolution. SPT can probe interactions between a particle and its environment but the price to be paid is the absence of ensemble averaging and a consequent lack of statistics. Here we address the benchmark question of how to accurately extract the diffusion constant of one single Brownian trajectory. We analyze a class of estimators based on weighted functionals of the square displacement. For a certain choice of the weight function these functionals provide the true ensemble averaged diffusion coefficient, with a precision that increases with the trajectory resolution. DOI: 10.1103/PhysRevE.86.060101
引用
收藏
页数:5
相关论文
共 50 条
  • [41] FROM BROWNIAN MOTION WITH A LOCAL TIME DRIFT TO FELLER'S BRANCHING DIFFUSION WITH LOGISTIC GROWTH
    Pardoux, Etienne
    Wakolbinger, Anton
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 720 - 731
  • [42] Efficient numerical solution of the time fractional diffusion equation by mapping from its Brownian counterpart
    Stokes, Peter W.
    Philippa, Bronson
    Read, Wayne
    White, Ronald D.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 282 : 334 - 344
  • [43] Two time constants for the binding of proteins to DNA from micromechanical data
    Turner, MS
    BIOPHYSICAL JOURNAL, 2000, 78 (02) : 600 - 607
  • [44] V-Bundles: Clustering Fiber Trajectories from Diffusion MRI in Linear Time
    Reichenbach, Andre
    Goldau, Mathias
    Heine, Christian
    Hlawitschka, Mario
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2015, PT I, 2015, 9349 : 191 - 198
  • [45] DETERMINATION OF DECAY CONSTANTS FROM TIME-VARYING PRESSURE DATA
    BEATTIE, C
    HUMPHREY, LS
    MARUSCHAK, G
    ANESTHESIOLOGY, 1989, 70 (01) : 159 - 160
  • [46] A CRITIQUE OF THE PRACTICE OF COMPARING CONTROL DATA OBTAINED AT A SINGLE TIME POINT TO EXPERIMENTAL-DATA OBTAINED AT MULTIPLE TIME POINTS
    BURNS, ER
    CELL AND TISSUE KINETICS, 1981, 14 (02): : 219 - 224
  • [47] Identification of Intensity Ratio Break Points from Photon Arrival Trajectories in Ratiometric Single Molecule Spectroscopy
    Bingemann, Dieter
    Allen, Rachel M.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2012, 13 (06) : 7445 - 7465
  • [48] CONSECUTIVE OVERALL STABILITY CONSTANTS OF METAL COMPLEXES IN SOLUTION FROM DIFFUSION CURRENT DATA
    CROW, DR
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1968, 16 (02): : 137 - &
  • [49] Uncovering pseudotemporal trajectories with covariates from single cell and bulk expression data
    Campbell, Kieran R.
    Yau, Christopher
    NATURE COMMUNICATIONS, 2018, 9
  • [50] Wishbone identifies bifurcating developmental trajectories from single-cell data
    Manu Setty
    Michelle D Tadmor
    Shlomit Reich-Zeliger
    Omer Angel
    Tomer Meir Salame
    Pooja Kathail
    Kristy Choi
    Sean Bendall
    Nir Friedman
    Dana Pe'er
    Nature Biotechnology, 2016, 34 : 637 - 645