The polynomial numerical index of a Banach space

被引:29
作者
Choi, YS [1 ]
Garcia, D
Kim, SG
Maestre, T
机构
[1] POSTECH, Dept Math, Pohang 790784, South Korea
[2] Univ Valencia, Dept Anal Matemat, E-46100 Valencia, Spain
[3] Kyungpook Natl Univ, Dept Math, Taegu 702701, South Korea
基金
新加坡国家研究基金会;
关键词
polynomial numerical index; numerical radius; Aron-Berner extension; homogeneous polynomials; Banach spaces;
D O I
10.1017/S0013091502000810
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the polynomial numerical index of order k of a Banach space, generalizing to k-homogeneous polynomials the 'classical' numerical index defined by Lumer in the 1970s for linear operators. We also prove some results. Let k be a positive integer. We then have the following: (i) n((k)) (C(K)) = 1 for every scattered compact space K. (ii) The inequality n((k)) (E) >= k(k/(1-k)) for every complex Banach space E and the constant k(k/(1-k)) is sharp. (iii) The inequalities n((k))(E) <= n((k-1))(E) <= k((k+(1/(k-1))))/(k-1)(k-1)n((k))(E) for every Banach space E. (iv) The relation between the polynomial numerical index of c(0), l(1), l(infinity) sums of Banach spaces and the infimum of the polynomial numerical indices of them. (v) The relation between the polynomial numerical index of the space C(K, E) and the polynomial numerical index of E. (vi) The inequality n((k)) (E**) <= n((k)) (E) for every Banach space E. Finally, some results about the numerical radius of multilinear maps and homogeneous polynomials on C(K) and the disc algebra are given.
引用
收藏
页码:39 / 52
页数:14
相关论文
共 19 条
  • [1] ARON RM, 1978, B SOC MATH FR, V106, P3
  • [2] Bollob B., 1970, B LOND MATH SOC, V2, P181, DOI DOI 10.1112/BLMS/2.2.181
  • [3] Bonsall F. F., 1973, London Math. Soc. Lecture Note Ser., V10
  • [4] BONSALL F. F., 1971, London Math. Soc. Lecture Note Series, V2
  • [5] Norm or numerical radius attaining polynomials on C(K)
    Choi, YS
    Garcia, D
    Kim, SG
    Maestre, M
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 295 (01) : 80 - 96
  • [6] Norm or numerical radius attaining multilinear mappings and polynomials
    Choi, YS
    Kim, SG
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 : 135 - 147
  • [7] CRABB MJ, 1972, P LOND MATH SOC, V25, P486
  • [8] SOME EXTREMAL PROBLEMS IN THE THEORY OF NUMERICAL RANGES
    Crabb, M. J.
    Duncan, J.
    McGregor, C. M.
    [J]. ACTA MATHEMATICA, 1972, 128 (01) : 123 - 142
  • [9] DAVIS JW, 1989, J BONE MINER RES, V4, P351
  • [10] Dineen S., 1999, COMPLEX ANAL INFINIT