Prime power graphs for groups of Lie type

被引:46
作者
Kantor, WM [1 ]
Seress, K
机构
[1] Univ Oregon, Eugene, OR 97403 USA
[2] Ohio State Univ, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jabr.2001.9016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We associate a weighted graph Delta(G) to each finite simple group G of Lie type, We show that, with an explicit list of exceptions, Delta(G) determines G up to isomorphism, and for these exceptions, Delta(G) nevertheless determines the characteristic of G. This result was motivated by algorithmic considerations. We prove that for any finite simple group G of Lie type, input as a black-box group with an oracle to compute the orders of group elements, Delta(G) and the characteristic of G can be computed by a Monte Carlo algorithm in time polynomial in the input length. The characteristic is needed as part of the input in a previous constructive recognition algorithm for G. (C) 2002 Elsevier Science.
引用
收藏
页码:370 / 434
页数:65
相关论文
共 53 条
[21]  
CELLER F, 1997, DIMACS SER DISCRETE, V28, P61
[22]  
Celler Frank, 1995, DIMACS SERIES DISCRE, V28, P55
[23]  
Deriziotis D. I., 1983, TOKYO J MATH, V6, P191, DOI [10.3836/tjm/1270214335, DOI 10.3836/TJM/1270214335]
[24]   CENTRALIZERS OF SEMISIMPLE ELEMENTS IN FINITE TWISTED GROUPS OF LIE TYPE [J].
DERIZIOTIS, DI ;
LIEBECK, MW .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1985, 31 (FEB) :48-54
[25]   CHARACTER TABLE AND BLOCKS OF FINITE SIMPLE TRIALITY GROUPS 3D4(Q) [J].
DERIZIOTIS, DI ;
MICHLER, GO .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 303 (01) :39-70
[26]   THE MAXIMAL TORI IN THE FINITE CHEVALLEY-GROUPS OF TYPE-E6, TYPE-E7 AND TYPE-E8 [J].
DERIZIOTIS, DI ;
FAKIOLAS, AP .
COMMUNICATIONS IN ALGEBRA, 1991, 19 (03) :889-903
[27]   PROJECTIVE REPRESENTATIONS OF MINIMUM DEGREE OF GROUP EXTENSIONS [J].
FEIT, W ;
TITS, J .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1978, 30 (05) :1092-1102
[28]  
Guralnick RM, 2001, OHIO ST U M, V8, P169
[29]   TESTING MODULES FOR IRREDUCIBILITY [J].
HOLT, DF ;
REES, S .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1994, 57 :1-16
[30]   Computing matrix group decompositions with respect to a normal subgroup [J].
Holt, DF ;
LeedhamGreen, CR ;
OBrien, EA ;
Rees, S .
JOURNAL OF ALGEBRA, 1996, 184 (03) :818-838