Prime power graphs for groups of Lie type

被引:46
作者
Kantor, WM [1 ]
Seress, K
机构
[1] Univ Oregon, Eugene, OR 97403 USA
[2] Ohio State Univ, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jabr.2001.9016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We associate a weighted graph Delta(G) to each finite simple group G of Lie type, We show that, with an explicit list of exceptions, Delta(G) determines G up to isomorphism, and for these exceptions, Delta(G) nevertheless determines the characteristic of G. This result was motivated by algorithmic considerations. We prove that for any finite simple group G of Lie type, input as a black-box group with an oracle to compute the orders of group elements, Delta(G) and the characteristic of G can be computed by a Monte Carlo algorithm in time polynomial in the input length. The characteristic is needed as part of the input in a previous constructive recognition algorithm for G. (C) 2002 Elsevier Science.
引用
收藏
页码:370 / 434
页数:65
相关论文
共 53 条
  • [1] Altseimer C, 2001, OHIO ST U M, V8, P1
  • [2] [Anonymous], J FS U TOKYO
  • [3] [Anonymous], 1972, PURE APPL MATH
  • [4] ON THE MAXIMAL-SUBGROUPS OF THE FINITE CLASSICAL-GROUPS
    ASCHBACHER, M
    [J]. INVENTIONES MATHEMATICAE, 1984, 76 (03) : 469 - 514
  • [5] CHEVALLEY-GROUPS OF TYPE-G2 AS THE GROUP OF A TRILINEAR FORM
    ASCHBACHER, M
    [J]. JOURNAL OF ALGEBRA, 1987, 109 (01) : 193 - 259
  • [6] Short presentations for finite groups
    Babai, L
    Goodman, AJ
    Kantor, WM
    Luks, EM
    Palfy, PP
    [J]. JOURNAL OF ALGEBRA, 1997, 194 (01) : 79 - 112
  • [7] Babai L., 1991, P 23 ACM STOC, P164
  • [8] BABAI L, 1999, LONDON MATH SOC LECT, V260
  • [9] BABAI L, UNPUB BLACK BOX RECO
  • [10] FACTOR REFINEMENT
    BACH, E
    DRISCOLL, J
    SHALLIT, J
    [J]. JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1993, 15 (02): : 199 - 222