Prime power graphs for groups of Lie type

被引:46
作者
Kantor, WM [1 ]
Seress, K
机构
[1] Univ Oregon, Eugene, OR 97403 USA
[2] Ohio State Univ, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jabr.2001.9016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We associate a weighted graph Delta(G) to each finite simple group G of Lie type, We show that, with an explicit list of exceptions, Delta(G) determines G up to isomorphism, and for these exceptions, Delta(G) nevertheless determines the characteristic of G. This result was motivated by algorithmic considerations. We prove that for any finite simple group G of Lie type, input as a black-box group with an oracle to compute the orders of group elements, Delta(G) and the characteristic of G can be computed by a Monte Carlo algorithm in time polynomial in the input length. The characteristic is needed as part of the input in a previous constructive recognition algorithm for G. (C) 2002 Elsevier Science.
引用
收藏
页码:370 / 434
页数:65
相关论文
共 53 条
[1]  
Altseimer C, 2001, OHIO ST U M, V8, P1
[2]  
[Anonymous], J FS U TOKYO
[3]  
[Anonymous], 1972, PURE APPL MATH
[4]   ON THE MAXIMAL-SUBGROUPS OF THE FINITE CLASSICAL-GROUPS [J].
ASCHBACHER, M .
INVENTIONES MATHEMATICAE, 1984, 76 (03) :469-514
[5]   CHEVALLEY-GROUPS OF TYPE-G2 AS THE GROUP OF A TRILINEAR FORM [J].
ASCHBACHER, M .
JOURNAL OF ALGEBRA, 1987, 109 (01) :193-259
[6]   Short presentations for finite groups [J].
Babai, L ;
Goodman, AJ ;
Kantor, WM ;
Luks, EM ;
Palfy, PP .
JOURNAL OF ALGEBRA, 1997, 194 (01) :79-112
[7]  
Babai L., 1991, P 23 ACM STOC, P164
[8]  
BABAI L, 1999, LONDON MATH SOC LECT, V260
[9]  
BABAI L, UNPUB BLACK BOX RECO
[10]   FACTOR REFINEMENT [J].
BACH, E ;
DRISCOLL, J ;
SHALLIT, J .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1993, 15 (02) :199-222